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ABSTRACT

Human pluripotent stem cell-derived cardiomyocytes
(hPS-CM) may offer a number of advantages over previ-
ous cardiac models, however, questions of their immatur-
ity complicate their adoption as a new in vitro model.
hPS-CM differ from adult cardiomyocytes with respect to
structure, proliferation, metabolism and electrophysiology,
better approximating fetal cardiomyocytes. Time in cul-
ture appears to significantly impact phenotype, leading to

what can be referred to as early and late hPS-CM. This
work surveys the phenotype of hPS-CM, including struc-
ture, bioenergetics, sensitivity to damage, gene expression,
and electrophysiology, including action potential, ion
channels, and intracellular calcium stores, while contrast-
ing fetal and adult CM with hPS-CM at early and late
time points after onset of differentiation. STEM CELLS

2013;31:829–837
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INTRODUCTION

There is an urgent need for novel cardiomyocyte models:
ischemic heart disease remains the #1 killer in the western
world [1], congenital cardiomyopathies affect 1%-2% of live
births [2, 3], and drug-induced cardiotoxicity is a leading
cause of market withdrawal [4]. Human pluripotent stem
cell-derived cardiomyocytes (hPS-CM) may offer significant
advances in the study of cardiac disease and treatments [5,
6]. Similar to currently available cardiomyocyte models,
hPS-CM contract rhythmically [7] and respond appropriately
to numerous cardioactive drugs [5, 8]. In addition, hPS-CM
can also be manipulated genetically [9], maintained in in
vitro culture long-term (1þ years) [10], and be created
from adult patients with genetic conditions (in the case of
cardiomyocytes sourced from induced pluripotent stem cells,
hiPS) [11–14] and may engraft into damaged hearts in vivo
[15–17].

Given the potential of these cells and the excitement sur-
rounding them (>2,000 publications since the first report a
decade ago [18]), it is timely to address the similarity of these
cells to adult human cardiomyocytes, and how they might be
used as models of such. Open questions surrounding these
cells include: How do we best assess cardiomyocyte maturity?
How well do hPS-CM model embryonic or adult CM in vitro?
How does maturity change during in vitro culture? When can
hPS-CM be used as models for adult CM?

It is frequently noted that hPS-CM resemble human fetal
cardiomyocytes [7]; however, no previous review has system-
atically quantified the similarities. This is complicated by
high variation in phenotype between hPS-CM studies, par-
tially explained by differences in cell line of origin and cul-
ture conditions. Furthermore, evidence suggests that hPS-CM
develop a more mature, adult-like phenotype with time in cul-
ture, yet differences between early and late phase hPS-CM
have not yet been described. Therefore, this review will define
‘‘early’’ and ‘‘late’’ phase hPS-CM phenotype, and describe
how hPS-CM resemble embryonic and adult cardiomyocytes
with respect to key markers of maturity, including ultrastruc-
ture, metabolism, gene expression, and electrophysiology.

hPS-CM STRUCTURE AND FUNCTION

RESEMBLE EMBRYONIC CARDIOMYOCYTES

Definition of Early and Late Phase hPS-CM

In this work, hPS-CM will be defined as spontaneously con-
tractile cells derived from a human pluripotent cell line, to
the exclusion of contractile cells derived from adult mesen-
chymal stem cells [19–22] or from mouse pluripotent stem
cells, which have been described elsewhere [23–25]. Recent
reviews have covered methods to create [17, 26–29] and
purify hPS-CM [30], as well as their electrophysiology [31],
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drug response [5, 8], and function after transplant in vivo [16,
32]. CM derived from hiPS (hiPS-CM) and human embryonic
stem (hES-CM) cells appear to be relatively similar but will
be compared when data describing differences are available.

hPS-CM vary in maturity, thus, we will define hPS-CM as
either early phase, defined as contractile cells, with some prolif-
erative capacity and with embryonic like electrophysiology (i.e.,
small negative membrane potential and small action potential
amplitude), or late phase, defined by loss of proliferative
capacity and more adult-like electrophysiology. hPS-CM show
early phase characteristics for generally the first month after ini-
tiation of contraction, with development of late phase character-
istics arising afterward. Different elements of maturity appear to
be affected by line [33–35], time in culture [35, 36], cocultured
cells [37], and culture conditions [38, 39]; however, the factors
affecting maturity remain largely unknown. This suggests that
after initiation of contraction, genetic and environmental factors
interact leading to a more mature phenotype; however, the pro-
cess is incompletely understood.

Morphology

It has been widely reported that hPS-CM structurally resemble
embryonic or fetal cardiomyocytes [40, 41]. However, poten-
tially important differences are seen when these cells are
compared to embryonic or adult CM. Adult CM are large and
cylindrical (approximately 150 � 10 lm for ventricular cells)
[42], while embryonic and fetal CM are smaller [43]. Simi-
larly, early hPS-CM (initiation of contraction, 21 days) are
small and round to slightly oblong, approximately 5-10 lm in
diameter [7, 33, 44] (Fig. 1). Late hPS-CM (>35 days) de-
velop a more oblong morphology (30 lm � 10 lm), similar
to the dimensions of human embryonic CM but remain small
compared to adult [7]. In addition, most adult CM are bi- or
multinucleated, whereas hPS-CM are mono-nuclear, similar to
early embryonic cardiomyocytes [43].

The extensive t-tubule network present in adult ventricular
CM is absent in both hPS-CM and embryonic CM [42]. As a

result, excitation-contraction coupling is slower, and calcium
primarily enters the cell through the sarcolemma instead of
releasing from the sarcoplasmic reticulum (SR) [45–48].
Thus, early hPS-CM structurally resemble embryonic CM.
With increasing time in culture, late hPS-CM develop a more
adult-like morphology but do not appear to develop t-tubules
or multinucleation (Fig. 1).

Function: Proliferation

Early hPS-CM proliferate [7, 39, 49], similar to embryonic or
fetal mammalian cardiomyocytes [50–52]. In contrast, adult
CM are among the most slowly dividing cell types [53]. Over
time in culture, proliferative capacity of hPS-CM decreases
from that of stem cells (24-48-hour doubling time [54]) to
low levels: at 4 weeks, only 10% cells were BrdUþ after a
24-hour incorporation assay [39] and no Ki-67þ cells were
observed [7], similar to changes seen in fetal cardiac develop-
ment [50] (Fig. 2). Atrial natriuretic factor (involved in cardi-
omyocyte proliferation [55, 56]) is expressed in hPS-CM [57,
58]. In summary, early hPS-CM proliferate at a lower rate
than their pluripotent progenitors whereas late hPS-CM can
be considered nonproliferating cells.

Function: Gene Expression

The transcriptional profile of hPS-CM is starkly different
from their originating pluripotent stem cells. Important differ-
ences include loss of pluripotency transcription factors and
upregulation of mesodermal and cardiac markers [59–62].
Once differentiated, hPS-CM display a relatively homogene-
ous, cardiac-like gene expression program. Interestingly, gene
expression of hiPS-CM and hES-CM is surprisingly similar,
with only 1.9% of genes differentially expressed in these two
cell types, despite dramatic differences between expression
profiles in the undifferentiated hiPS and hES sources [63].

hPS-CM expression of contractile genes was not discerni-
bly different from fetal heart tissue (20-week gestation) in
one study of enriched early hPS-CM (age unknown) [59].

Figure 1. A visual comparison of early hPS-CM, late hPS-CM and adult CM morphology. Characteristics of hPS-CM depend strongly on time
in culture since the initiation of contraction (early-proliferative, late-nonproliferative). Note that late hPS-CM differ from early hPS-CM with
respect to shape, sarcomeric area and receptor expression. Adult CM are far larger, with multiple nuclei, large sarcomeric area, and large numbers
of mitochondria. Abbreviations: hPSC, human pluripotent stem cell; hPS-CM, human pluripotent stem cell-derived cardiomyocytes.
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Global gene expression profile of purified early hPS-CM is
more similar to fetal cardiac tissue (age unspecified) than to
adult cardiac tissue; however, hPS-CM gene expression clus-
tered more closely with either fetal or adult cardiac tissue
than with pluripotent stem cells [64]. Bigger differences are
seen when comparing hPS-CM and adult heart tissue, with
important differences seen in a number of cardiac ion channel

and calcium handling genes, once again highlighting the
immature phenotype of hPS-CM [61, 65].

Function: Metabolism and Bioenergetics

Contractile machinery and mitochondria fill two-thirds of the
cytoplasmic volume in adult CM (myofibril cell area, 40%

Figure 2. Visual comparison of early hPS-CM, late hPS-CM and adult CM phenotype. (A): An overview of major changes seen with increas-
ing time in culture. Large changes in action potential characteristics (orange) are seen with time in culture, as well as expression of key ion chan-
nels (teal). (B): Calcium influx profiles for early and late hPS-CM compared with adult CM. Note that in early hPS-CM, almost no calcium is
released from the sarcoplasmic reticulum, leading to slow, diffusion-limited calcium influx. Late hPS-CM perform better, but still show slow
influx compared to adult. Abbreviation: hPS-CM, human pluripotent stem cell-derived cardiomyocytes.
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[66] to 52% [67] and mitochondria, 15% [66] to 25% [67,
68]). In contrast, both hPS-CM [30] and embryonic CM [69]
show smaller sarcomeric regions [58, 70] and have more
moderate numbers of mitochondria [68] (Fig. 1). Similarly,
expression of contractile and cytoskeletal genes is much
lower in hPS-CM (unknown age) compared to fetal (20
weeks) or adult cardiomyocytes [59, 64].

Adult CM are highly metabolically active and depend on
oxidative metabolism for synthesis of ATP (fatty acid oxida-
tion accounts for 90% of acetyl-CoA production [71, 72]). In
comparison, embryonic and fetal cardiomyocytes rely on gly-
colysis for production of ATP [69, 73] (fatty acid oxidation
<15% of acetyl-CoA production [74]) resulting in a relatively
hypoxia resistant phenotype and providing substrates for pro-
tein production [69]. hPS-CM showed primarily glycolytic
metabolism in one study (in late, nonproliferative hPS-CM)
which evaluated oxygen consumption rates [75] and mixed
glycolytic and oxidative metabolism in another which
assessed incorporation of radiolabeled carbon into metabolites
(age unknown) [68]. hPS-CM are also able to metabolize lac-
tate, unlike hPS [68]. Higher expression of oxidative phospho-
rylation genes and proteins are seen in hPS-CM compared to
pluripotent stem cells, suggesting that these cells have the
potential to use this metabolic pathway [68, 76, 77], though
the expression level lags behind fetal tissue [59]. It remains
unclear whether time in culture can alter hPS-CM preferred
energy substrate.

Sensitivity to Damage and Apoptosis

It is unclear to what extent in vitro adult CM mimic the in
vivo response to noxious stimuli. In vivo, adult CM may sur-
vive an entire lifetime (>80 years), while in vitro adult CM
rarely survive more than a few days [78]. In stark contrast,
hPS-CM are already culture-adapted, with reports of cells
maintaining viability and contractility for a year [10, 79].
These observations clearly complicate comparisons of the sen-
sitivity to damaging insults of hPS-CM with both in vivo and
in vitro adult CM, and additional work is required to fully
understand the differences in apoptotic cascades between
these conditions.

Despite these limitations, some evidence suggests that
hiPS-CM respond similarly to stimuli that cause damage to
adult CM. For example, cardiotoxic tyrosine kinase inhibitors
such as sunitinib and sorafenib demonstrate arrythmogenicity
and increased apoptosis in hiPS-CM at clinically cardiotoxic
doses of the drug [75, 80]. Likewise, doxorubicin, a cardio-
toxic chemotherapeutic which is believed to act through oxi-
dative stress [81], can induce apoptosis in hiPS-CM [82], as
well as microtubule derangement [83]. Similarly, direct appli-
cation of oxidizers such as hydrogen peroxide, induce apopto-
tic responses in hPS-CM [84, 85]. This process is mediated
by opening of the mitochondrial permeability transition pore
and could be prevented with anesthetic mediated precondi-
tioning [84, 85], thus recapitulating the behavior seen in adult
CM [86].

Embryonic human cardiomyocytes are resistant to hypoxia
[87], whereas adult CM are highly dependent on an adequate
oxygen supply [88]. As both hPS-CM and embryonic CM are
predominantly glycolytic [75], it may be inferred that hPS-
CM would likewise be resistant to hypoxia. However, the sen-
sitivity of hPS-CM to ischemic stimuli has not been fully
established. In summary, despite differences in metabolism,
hPS-CM are sensitive to oxidative stress and cardiotoxic
agents at levels expected from clinical use; however, their
sensitivity to ischemia has not been characterized.

Cardic-Specific Inotropic and Chronotropic
Receptors

Several key chronotropic responses are observed in hPS-CM
and may be affected by time in culture. a, b1, and b2 adreno-
ceptor response have all been demonstrated in hPS-CM [89,
90]. A positive response to isoprenaline (b receptor agonist)
challenge is almost universally performed in studies of hPS-
CM [18, 34, 35, 58, 89-98], suggesting that all hPS-CM have
some b-receptor expression, regardless of cell line of origin,
differentiation method. As in vivo, isoprenaline increases con-
traction rate (positive chonotropy), increases the amplitude of
the calcium transient, and decreases the relaxation time [90].
However, unlike adult CM, isoprenaline does not increase
contraction force [98], once again demonstrating the immatur-
ity of this cell type. b2 response accounts for 17%-37% [90]
of the total response to isoprenaline, akin to fetal CM. With
increased time in culture, hPS-CM demonstrated increased
chronotropic b agonist response [90, 97]. In summary, b adre-
noceptor response is present in hPS-CM and shares character-
istics with fetal CM and may be amplified with time in in
vitro culture.

Several studies have demonstrated a chronotropic response
to carbacholine [89, 91, 92], thus showing muscarinic receptor
activity. Finally, increased intraceullular cAMP increases con-
traction rate in hPS-CM via the phosphodiesterase inhibitor
IBMX [18, 58] and the adenylyl cyclase activator forskolin
[58, 89]. It is unclear whether in vitro maturation time affects
the magnitude of these responses or whether these responses
affect force of hPS-CM contraction.

Electrophysiology: Spontaneous Beating Rate

Spontaneous and synchronous contraction is seen as early as
5 days after the initiation of differentiation [99] and can be
maintained for more than 1 year in culture [10] (in stark con-
trast to adult CM [78]). Different basal rhythms have been
reported, ranging from 21 [93] to 52 beats per minute (BPM)
[90], with most reporting �40 BPM [35, 92, 100]. The rate of
contraction may be affected by cell line, cultures conditions,
time since differentiation, and time since the onset of contrac-
tion. hiPS-CM from iPS from patients with long QT syn-
drome show slower repolarization, thus recapitulating the in
vivo phenotype [11, 12, 101-103].

Time in culture affects beating rate, though magnitude
and direction of this change appears to vary with study. Sev-
eral studies have reported moderate increases in contraction
rate (30-75 BPM at 70 days [90] and 40-85 BPM at 60 days
[35]) though a decrease has also been reported (45-5 BPM
over the course of 63 days [92]). hES-CM show faster and
stronger rhythms than hiPS-CM [35], which may be due to
earlier initiation of contraction or the differences between
hiPS and hES cells [63, 104]. In summary, spontaneous beat-
ing is the principal hallmark of differentiated hPS-CM, and
beating rate is affected by line of origin and by time in
culture.

Electrical Properties: Action Potential

hPS-CM contract spontaneously and synchronously, as noted
previously, and are thus electrically active. Cells displaying
atrial-, nodal-, and ventricular-like APs have been reported
[105–107]. In addition, hPS-CM action potential characteris-
tics vary between studies and within studies with different
cell lines [35], differentiation methods [108], and time in cul-
ture [37]. Variation in a single population of hPS-CM has
also been demonstrated, suggesting that even using the same
cells, methods, and at the same time point, the
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electrophysiological characteristics of hiPS-CM are more het-
erogeneous than those in an adult heart [108]. hPS-CM from
the same embryoid body (EB) (a more homogeneous environ-
ment) showed greater homogeneity in action potential dura-
tion than hPS-CM from same population but different EBs
[35], highlighting the potential important role of a common
extracellular environment in hPS-CM maturation.

Most reported action potential characteristics are less
mature than adult CM: maximum diastolic potential (MDP)
for adult ventricular myocytes is �85 mV [109], whereas
early hPS-CM MDP is approximately �30 mV [37] which
improves to �60 to �75 mV in late hPS-CM [35, 102, 110-
113]. The maximum rate of depolarization (dv/dtmax or Vmax)
in adult CM is extremely fast, ranging from 300 V/second in
healthy hearts [109] to about 100 V/second in heart failure
[114]. In contrast, early hPS-CM show extremely slow depo-
larization depolarization speeds. Early hPS-CM depolarize at
2 V/second [37], improving in late hPS-CM to 10-40 V/sec-
ond [35, 102, 112, 113] (with two studies reporting 130-150
V/second [108, 115] -Fig. 2). Similar parameters for embry-
onic or fetal cardiomyocytes are not available.

Electrical Properties: Ion Channels

The major ionic currents normally present in adult CM are
expressed in hPS-CM, though frequently at abnormal levels
(Fig. 2). The calcium channels are necessary for contractility,
as is NCX [116, 117] and HCN [110]. In early hPS-CM, so-
dium channel inhibition does not prevent spontaneous con-
traction, but in late hPS-CM the same inhibition blocked
spontaneous contraction [37].

The potassium currents considered to be responsible for
arrhythmias are expressed in hPS-CM [12, 102, 118] (Fig. 2).
As a result, considerable interest in using hPS-CM for antiar-
rhythmic drug screening exists and has been reviewed [8, 34,
101, 57]. Some arrhythmias in hPS-CM are affected by time
in culture, and thus may be a measure of in vitro maturity
[108, 119].

Electrical Properties: Intracellular Calcium

The extent of the SR and its necessity for automaticity in
hPS-CM is a matter of debate. In adult CM, calcium induced
calcium release (CICR) from the SR contributes almost 70%
of the total calcium release [120]. In contrast, hPS-CM,
which have very little SR function in the early phase [46,
121–125], demonstrate calcium transients that are smaller
and slower [126], with most cation influx is through the cell
membrane [124, 127]. This results in abnormal diffusion of
calcium into the cell [122] and reduces the synchrony in
contraction necessary for large force generation [98] (Fig.
2B).

Reports vary as to the presence and function of the SR,
possibly due to changes with maturity [45-47, 121, 124].
However, there is consensus that intracellular calcium stores
are smaller than in adult CM [121, 128]. Calcium handling
and response to compounds that modify calcium handling
(e.g., nifedipine and ryanodine) appear to vary significantly
between lines [122, 129], and between embryonic and
induced pluripotent derived CM [122, 130], including larger
intracellular calcium stores, though line to line differences
dominate differences between hES and hiPS class [35].
Over time in culture, increased sarcoplasmic reticulum func-
tion is seen as assessed by caffeine-induced calcium release
[121].

When paced, adult CM show a positive force-frequency
relationship; that is, at faster pacing rates, greater calcium

transients and force of contraction are seen [120]. This rela-
tionship requires both significant intracellular calcium stores
and electrical coordination across the cell (the t-tubule net-
work again ensures that the entire cell depolarizes rapidly and
homogeneously [120]). In contrast, hPS-CM have consistently
shown negative force-frequency relationships [45, 97, 128]. In
these cells, calcium primarily enters the cell across the cell
membrane and diffuses though the cytoplasm, a slower pro-
cess [42]. Similarly, postrest potentiation (i.e., an increased
uptake in calcium in resting cardiomyocytes after rapid pac-
ing) is not seen [45] or seen only to a low extent [97] in hPS-
CM. It has not been studied whether these properties improve
with time in culture, but the increased sarcoplasmic reticulum
function seen in late hPS-CM suggests they may be more
adult-like.

Some evidence suggests that non-SR calcium stores play
a key role in excitation-contraction coupling in hPS-CM
[46]. IP3 receptor (IP3R) is expressed and colocalizes with
sarcomeres and the cell nucleus [121, 124], suggesting it
may play a role in release of non-SR calcium stores. In
adult CM, IP3R appears to regulate noncontractile calcium
signaling only [131–133], although abnormal IP3R expres-
sion can cause arrhythmia [131]. In hPS-CM, IP3R may be
involved in contractility as contraction rate is sensitive to
IP3 and IP3R antagonists [121, 124]; however, this observa-
tion may depend on inhibition of ryanodine receptors
(RYRs) [37].

Structural and Functional Sarcoplasmic Reticulum
Proteins

The structural and functional proteins in the SR show low and
varied expression as would be expected from the evidence
provided earlier on the underdeveloped SR in hPS-CM.
Expression of the RYR is noted in a number of studies [37,
134], though at only a small fraction (0.1%) of the adult level
[121]. Most reports state that application of ryanodine slows
spontaneous contraction rate [14, 42, 97, 121, 124, 127, 135,
136], though two studies saw no such change [122, 125].
Similarly, one study reports close physical association
between RYRs and L-type calcium channels [127], which
would allow for efficient CICR [127], though other studies
reported no such association [42, 134]. It should be noted that
the colocalization of these two proteins in adult CM is
debated [137]. SERCA, the sarcoplasmic reticulum Ca2þ

ATPase pump, is also expressed in hPS-CM [122, 138] at lev-
els similar to fetal cardiomyocytes [134], but a variable
response to its inhibitor thaspargin has been reported [45,
124].

Not surprisingly, proteins known to regulate SR function
are also abnormally expressed in hPS-CM. Calsequestrin,
which binds calcium and allows for dense packing of the ion
in the SR, is absent in a number of studies [45, 46, 123, 134]
though present in one [97]. Interestingly, transgenic calse-
questrin overexpression was enough to improve calcium han-
dling and SR maturity in hiPS-CM [123]. Phospholamban, an
endogenous inhibitor of SERCA, is absent in some studies
[45, 46], though present in others [138], and its presence is
inferred from a positive drug response [90]. Some of this vari-
ability may be due to variable (widely unreported) hPS-CM
age or manual selection of spontaneously beating cells, as
more rapidly beating cells may have less phospholamban
expression (in vivo phospholamban is known to repress car-
diac contractility) [139, 140]. Junctin and triadin, which
potentiate RYR [141], were expressed at low levels in one
study [122] and absent in another [134].
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CONCLUSIONS

hPS-CM are a heterogeneous population of cells that recapitu-
late some features of embryonic and adult CM. hPS-CM con-
tract spontaneously and synchronously, express numerous car-
diac specific genes and proteins, and recapitulate several
important electrophysiological features of adult CM. Recapit-
ulation of fetal or adult CM phenotype may require novel cul-
ture methods better recapitulating the in vivo niche. Further-
more, time in culture, specifically time since the onset of
differentiation or time since spontaneous contraction, is a
major factor affecting proliferation, structure, intracellular cal-
cium stores, and ion channel expression. It is unclear why
time in culture should have such profound effects on hPS-CM
phenotype, though several studies have emphasized the impor-
tance of paracrine signaling and cellular milieu in maturation,
suggesting better recapitulation of the cardiac cellular niche
will improve maturity. Nonetheless, it is convenient to define
early and late phase hPS-CM based on phenotypic markers
that include sarcomeric organization, sarcoplasmic reticulum,
and membrane ion channels that impact such integrated
behaviors as cell proliferation and the action potential. De-

spite limitations, hPS-CM demonstrate significant potential as
a tool to enhance basic biological understanding, improve in
vitro drug screening, and thus create new therapeutic options.
Remaining challenges include improving the magnitude and
consistency of intracellular calcium stores, improving
sarcomeric volume and organization, creating consistent
reproducible cell populations, and determining the mecha-
nisms of increased maturity with time in culture.
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