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Abstract

The diffusing capacity, DL, is a critical physiological parameter of the lung used to assess gas exchange clinically.
Most models developed to analyze experimental data from a single breath maneuver have assumed a well-mixed or
uniform alveolar region, including the clinically accepted Jones–Meade method. In addition, all previous models have
assumed a constant DL, which is independent of alveolar volume, VA. In contrast, experimental data provide evidence
for a non-uniform alveolar region coupled with sequential filling of the lung. In addition, although the DL for carbon
monoxide is a weak function of VA, the DL of nitric oxide depends strongly on VA. We have developed a new
mathematical model of the single breath maneuver that considers both a variable degree of sequential filling and a
variable DL. Our model predicts that the Jones–Meade method overestimates DL when the exhaled gas sample is
collected late in the exhalation, but underestimates DL if the exhaled gas sample is collected early in the exhalation
phase due to the effect of sequential filling. Utilizing a prolonged constant exhalation method, or a three-equation
method, will also produce erroneous predictions of DL. We conclude that current methods may introduce significant
error in the estimation of DL by ignoring the sequential filling of the lung, and the dependence of DL on VA. © 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Krogh first introduced the single breath tech-
nique for the measurement of the diffusing capac-

ity, DL, of the lung in 1915 (Krogh, 1915). He
described the lung as a single well-mixed alveolar
compartment during the period of breathholding.
The increasing clinical significance of estimating
the rate of diffusion across the alveolar membrane
prompted researchers to provide more robust
methods of measuring DL. A significant source of
error in Krogh’s method is due to the fact that
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carbon monoxide (CO) and nitric oxide (NO) are
absorbed continuously during inspiration and ex-
piration as well as during breathholding. Ogilvie
et al. (1957) modified the above method by intro-
ducing the inert gas dilution for the estimation of
the initial alveolar concentration of CO. In addi-
tion, they tried to standardize the method by
introducing a significant breathhold time of 10
sec, with rapid inhalation and exhalation to re-
duce the error of neglecting the inspiratory and
expiratory phases.

Jones and Meade were the first to solve a
three-equation model (i.e. one equation for each
of the three phases of the single breath maneuver)
(Jones and Meade, 1961). In the same fashion
with the previous attempts, they assumed a uni-
form (well-mixed) alveolar region throughout the
single breath maneuver. They demonstrated that
the Ogilvie–Forster method still had a significant
error from assuming instantaneous inspiration
and expiration. However, they concluded that the
one-equation (Krogh) method could be corrected
to account for the exchange during inspiration
and expiration. They proposed two modifications:
(1) the breathhold time included 70% of the in-
spiratory time, and (2) the exhaled concentration
was estimated from a small collection sample
(�85 ml) immediately after the dead space
washout.

Cotton et al. (1979) suggested two corrections
to the single breathhold equation which would
also account for the effects of inspiratory and
expiratory flow and position of exhaled breath
sampling: (1) a time-averaged alveolar volume,
and (2) an effective residence time of gas in the
alveolar region. They also assumed that the lung
filled sequentially during inspiration and thus the
first bolus of gas inspired was the last bolus of gas
expired. This ‘first in, last out’ approach (sequen-
tially filled model) was in marked contrast to the
well-mixed uniform alveolar compartment used
by previous investigators since it creates an effec-
tive axial concentration gradient in the alveolar
region.

As rapid response CO analyzers and computers
became available more sophisticated models and
methods were developed. These new approaches
included variations of the 3-Eq. method (Graham

et al., 1980, 1981; Martonen and Wilson, 1982;
Graham et al., 1984; Saumon et al., 1984; Brenner
et al., 1994), as well as the continuous-exhalation
technique (Newth et al., 1977; Stokes et al., 1981;
Graham et al., 1983). In the 3-Eq. method, the
equations. proposed by Jones and Meade (uni-
form alveolar compartment) are used sequentially.
In the continuous-exhalation technique, DL can
be estimated by the rate that the alveolar concen-
tration decreases during exhalation. This ap-
proach provides an estimation of DL that is
independent of inspired concentration, inspiratory
flow rate, and breathhold time.

All of the aforementioned reports assume that
DL remains constant throughout the single exhala-
tion. Several researchers have provided evidence
for a constant DLCO (Newth et al., 1977; Cotton
et al., 1979), while others have reported a slightly
increasing DLCO with increasing lung volume
(Gurtner and Fowler, 1971; Weibel et al., 1973;
Rose et al., 1979; Borland and Higenbottam,
1989). In contrast, the DL of NO, DLNO, is a
strong function of alveolar volume (Borland and
Higenbottam, 1989; Tsoukias et al., 2000). Hence,
the previous models developed for determining
DLCO are inappropriate for describing DLNO, and
new theoretical methods must be developed.

The goal of this manuscript is to formulate a
new theoretical model that is able to simulate the
single breath maneuver used to estimate DLCO

and DLNO. Hence, the model development will:
(1) incorporate a DL that is a positive function of
VA, and (2) will consider the effect of sequential
filling of the lung due to parallel and stratified
inhomogeneities. The model will be tested using
experimental data in the companion manuscript
(Tsoukias et al., 2000).

2. Model development

The following model development will consider
the exchange of gas (i.e. CO or NO) during a
single breath maneuver, and, in terms of estimat-
ing the diffusing capacity of the lungs, will incor-
porate the new features of the effect of alveolar
volume and sequential filling. There is substantial
evidence which suggests that the lungs tend to fill
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and empty in a sequential fashion; that is, the first
air inspired tends to be the last air expired (first in,
last out phenomenon) (Dollfuss et al., 1967;
Fukuchi et al., 1980; Engel and Paiva, 1981; Meyer
et al., 1983). In order to capture the effect of
sequential filling one must consider the mechanisms
responsible for this observed phenomenon.

The lung is inhomogeneous in many aspects,
including the filling and mixing of air by convection
and diffusion. Parallel inhomogeneities result from
parallel convective pathways in the lungs whose
convective conductance is heterogeneous (Paiva
and Engel, 1981). The result is that certain regions
of the lungs tend to fill first (usually the apical
regions) and empty last. Stratified inhomogeneities
result from a diffusion limitation in the gas phase
along a single axial pathway (Scheid et al., 1981;
Six et al., 1991). When convective flow is very slow
(i.e. distal to the �15th generation), gas transport
is dominated by diffusion. As a gas diffuses distally,
the result is an axial concentration gradient or
stratified inhomogeneity. Both parallel and
stratified inhomogeneities or convective–diffusive
interactions contribute to a sloping alveolar plateau
during a single breath washout experiment of an
inert gas such as nitrogen or helium (Paiva and
Engel, 1981). In terms of estimating the diffusing
capacity, the important physiological sequelae of
sequential filling due to parallel and stratified
inhomogeneities is a distribution of residence times
of gas boli in the lungs.

The model development will first consider two
extreme cases (model 1 and model 2), then combine
these two cases to formulate the final model (model
3). In the first approach (Fig. 1A), and in agreement
with previously developed models (Jones and
Meade, 1961; Graham et al., 1980; Martonen and
Wilson, 1982; Graham et al., 1983, 1984; Saumon
et al., 1984), the alveolar region of the lung is
represented by a single well-mixed compartment
(model 1). Alveolar concentration, CA(t), like alve-
olar volume, VA(t), is only a function of time while
the diffusing capacity (DL) can be constant or a
function of VA. In the second approach (Fig. 1B),
the alveolar compartment is modeled as a series of
parallel/axial compartments that fill and empty in
a completely sequential fashion; each parallel/axial
compartment is completely filled before the next

compartment starts filling (and vice versa on expi-
ration). This system can be alternatively repre-
sented by a series of boluses of gas that do not
interact or mix with neighboring boluses and enter
and leave the lung sequentially (model 2). This
model structure will introduce a concentration
gradient in the alveolar region that models sequen-
tial filling due to parallel and/or stratified inhomo-
geneities; thus, we will refer to this as an effecti6e
alveolar concentration gradient. Finally, model 1
and model 2 will be combined to form the complete
robust model (model 3) that includes a variable
degree of alveolar compartment or acinar mixing.

To simplify the problem and preserve analytical
solutions, we assume that inspiratory flow (V: I),
expiratory flow (V: E), and inspired concentration
(CI) remain constant for any individual maneuver,
while the alveolar gas concentration prior to the
inspiration is zero. The derivation of the model
equations is presented for the simpler case of
constant DL, while only the solutions for a volume
dependent DL are presented.

2.1. Case I: DL=constant (no dependence on
VA)

2.1.1. Model 1 (single well-mixed al6eolar
compartment)

A simple mass balance on the well-mixed com-
partment of Fig. 1A results in the following differ-
ential equation:
d
dt

(VACA)=V: ECA+V: ICI−DLCA (1)

Here DL has the units of ml/sec as we are using
units of concentration in the mass balance. In the
figures that follow, we convert to the more com-
monly encountered units for DL of ml/min/mmHg
in which units of partial pressure are employed as
the driving force for mass transfer. Eq. (1) can be
solved for each of the three phases of the single
breath maneuver: (1) inspiration; (2) breathhold;
and (3) expiration. These three solutions have
already been introduced by others (Jones and
Meade, 1961; Graham et al., 1980; Martonen and
Wilson, 1982), and are presented here with minor
modifications:

Inspiration 0B tB tinsp, V: E=0:
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C. A(tinsp)=
CA(tinsp)

CAo

=
VAo/tinsp

DL+V: I

�
1−

�VRV

VAo

�(DL+V: I)/V: I�
(2a)

CAo =
V: ICI tinsp

VAo

:
CICECH4

(VA)
CICH4

(2b)

C. A(tinsp)is the alveolar concentration normalized
by CAo, and VAo is the alveolar volume at the end
of inspiration. CAo represents the hypothetical

alveolar concentration after instantaneous dilu-
tion of the inspired gas with the pre-inspiratory or
residual volume (VA(0)=VRV). CAo is estimated
with the dilution of an inert gas (we will use CH4

in our simulations). VRV is estimated by dilution
in the inspired and exhaled concentrations of the
inert gas (CICH

4
, CECH4

). The decay in the exhaled
inert gas concentration (CECH4

(VA)) is used in
Eqs. 2(a) and (b) to correct for the components of
the effective alveolar concentration gradient (and

Fig. 1. (A) Uniform alveolar model (model 1). A single well-mixed compartment describes the alveolar region. Alveolar
concentration CA(t), like the alveolar volume VA(t), is only a function of time while the diffusing capacity DL can be constant or
a function of VA. The inspiratory flow rate (V: I), the expiratory flow rate (V: E) and the inspired concentration (CI) are assumed
constant while the exhaled concentration CE is equal to CA delayed by the time needed for the gas to transverse the dead space of
volume (VDS). (B) Sequentially filled alveolar model (model 2). The alveolar compartment is modeled as a series of well-mixed
compartments, or boluses of gas, which do not interact or mix with neighboring compartments and enter and leave the lung
sequentially. Every individual bolus has a unit volume dV, a unit diffusing capacity dDL, and a uniform, time dependent
concentration Cb,N(t) where N represents the bolus number. The total number of such boluses in the lung N(t) changes with time
to account for the change of VA.
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thus exhaled concentration) that are not due to
diffusion through the alveolar membrane (Newth
et al., 1977; Cotton and Graham, 1980).

Breathhold

tinspB tB tinsp+ tbh, V: E=0, V: I=0,

VA=VAo:

CA(tinsp+ tbh)=CA(tinsp) e− (DL/VAo)tbh (3)

Expiration tinsp+ tbhB t, V: I=0:

CA(t)=CA(tinsp+ tbh)
�VA(t)

VAo

�DL/V: E

(4)

Eqs. 2–4 can be combined to yield the normalized
exhaled concentration (C. E) as a function of time:

lnC. E
�

t+
VDS

V: E

�
=ln

CE(t+VDS/V: E)
CAo(VA(t))

=DL
� 1

V: E

�
ln

VA(t)
VAo

−
DL

VAo

tbh

+ln
�VAo/tinsp

DL+V: I

�
1−

�VRV

VAo

�(DL+V: I)/V: I��
=DL

� 1
V: E

�
ln

VA(t)
VAo

−
DL

VAo

tbh

+ln
� V: I

DL+V: I
c
�

(5a)

c=
1− (VRV/VAo)(DL+V: I)/V: I

1−VRV/VAo

(5b)

The exhaled concentration CE is equal to alveolar
concentration CA delayed by the time needed by
the alveolar gas to transverse the dead space
volume VDS.

2.1.2. Model 2 (completely unmixed al6eolar
region)

In model 2 the alveolar compartment consists
of a series of compartments (boluses), which do
not mix or interact with neighboring compart-
ments (Fig. 1B), and effectively represents sequen-
tially filled parallel compartments in the lungs
and/or stratified inhomogeneities. The volume of
the unit compartment, dV, is constant throughout
the single breath maneuver, while the number of
these units, N(t), within the alveolar volume
changes with time to account for changes in VA.
Thus,

dV=
VA(t)
N(t)

=
VRV

NRV
=

VAo

No

(6)

where NRV and NO are the number of filled
compartments prior and at the end of inspiration,
respectively. The concentration of the Nth bolus,
Cb,N(t), depends completely on the initial concen-
tration Cb,N(0) of the specific unit, and the resi-
dence time of the bolus inside the alveolar
compartment. The residence time is simply the
difference between the time when the bolus enters,
tin,N, and when it exits, tout,N, the alveolar region.
This model assumes a ‘first in, last out’ approach
in the filling and emptying of the alveolar com-
partment and represents the opposite extreme of
model 1. Thus, at the time when the Nth com-
partment fills or empties (Nth bolus enters or
exits), the alveolar volume VAN is the same (i.e.
VAN=VA(tin,N)=VA(tout,N)). It can be shown
that for an alveolar region consisting of N uni-
form compartments, the total diffusing capacity
DL is just the sum of the compartment diffusing
capacities (Tsoukias, 1999). Then the following
relationships hold:

dDL(t)=
DL

N(t)
(7a)

dDL(t)
dV

=
DL

VA(t)
(7b)

Note in order to preserve a constant total DL,
dDL has to be dependent on VA.

The differential equation that describes the gas
exchange inside the Nth compartment in all three
phases of the single breath is derived from a mass
balance on the compartment and is given by:

dCb,N

dt
= −

dDL

dV
Cb,N= −

DL

VA(t)
Cb,N (8)

The choice for the initial condition Cb,N(0) (i.e.
the entering concentration of the Nth bolus) is
very important. A general description can be ac-
quired by assuming an entering concentration
equal to the following:

Cb,N(0)=c CAo(VAN)=c
CI

CICH4

CECH4
(VAN) (9)
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where c is defined in Eq. (5b). This choice lies in
between the extreme cases of absolutely no mixing
between the inspired gas and the residual volume
(Cb,N(0)=CI), and complete mixing between the
inspired gas and the residual volume (Cb,N(0)=
CAo). It should be noted that for the important
limiting case of DL��, Eq. (9) reduces to the
case of no mixing with the residual volume, and
for the limiting case were DL�0, Eq. (9) reduces
to the case of mixing with the residual volume.
For the general case (DL\0), Eq. (9) provides an
estimation for the effective alveolar concentration
profile with a uniform decay in both the inspired
and the residual volumes and an average concen-
tration over the alveolar volume for model 2
identical to model 1 (Appendix A). Eq. (8) can be
solved for Cb,N(t) in a fashion analogous to that
presented for model 1.

Inspiration 0B tB tinsp, V: E=0:

ln(C. b,N(tinsp))=ln
Cb,N(tinsp)
CAo(VAN)

=ln
Cb,N(tinsp)

c−1Cb,N(0)

=
DL

V: I
ln

VAN

VAo

+ln c (10)

Breathhold

tinspB tB tinsp+ tbh, V: E=0, V: I=0:

Cb,N(tinsp+ tbh)=Cb,N(tinsp) e− (DL/VAo) tbh (11)

Expiration tinsp+ tbhB t, V: I=0:

Cb,N(tout, N)=Cb,N(tinsp+ tbh)
�VA(tout, N)

VAo

�DL/V: E

(12)

Eqs. (11) and (12) represent the concentration of
the Nth compartment at the end of breathhold,
and at the time that the gas exits the alveolar
compartment during expiration (tout,N), respec-
tively, and are identical with Eqs. (3) and (4).

By combining Eqs. (10)–(12), and the assump-
tion of an infinite number of unit compartments
(dV�0), the following expression for the normal-
ized exhaled concentration as a function of time is
derived:

lnC. E(t+VDS/V: E)=ln
Cb,N(tout,N)
c-1 Cb,N(0)

= DL
� 1

V: I
+

1
V: E

�
ln

VA(t)
VAo

−
DL

VAo

tbh+ln c (13)

The exhaled concentration CE(t+VDS/V: E) is
equal to the concentration of the gas which exits
the alveolar compartment at time t= tout,N.

2.1.3. Comparison of model 1 and model 2
Inspecting the output of the two models (i.e.

Eqs. 5a,b and 13) we can conclude that for the
two limiting cases of DL�0, or V: I��, the two
models are equivalent. For the general case were
DL\0 and V: I is finite, the two approaches differ
only during inspiration. For model 1, the alveolar
concentration CA(tinsp) has a profile similar to the
decay of the inert gas (i.e. CH4), resulting from
stratified and parallel inhomogeneities
(C. A(tinsp)=constant). The corresponding profile
in model 2 has a steeper axial decay resulting
from the sequential filling of the lung (i.e. gas in
the regions that fill first have a lower concentra-
tion due to increased residence time in the alve-
olar region). Nevertheless, despite the different
effective alveolar concentration profiles in the two
models, the average alveolar concentration at the
end of inspiration is the same due to the homoge-
neous DL (Tsoukias, 1999).

The above concepts are presented in Fig. 2. In
this figure, the natural logarithm of the normal-
ized alveolar concentration, (corrected for the in-
ert gas decay), is presented as a function of the
natural logarithm of VA. As suggested by Eqs.
5a,b and 13, the dependence is linear. Three pairs
of lines are shown representing the solution for
model 1 and model 2 at three different times
during the single breath maneuver: (1) at the end
of inspiration, t= tinsp; (2) at the end of breath
holding, t= tinsp+ tbh; and (3) during exhalation
t\ tinsp+ tbh. For the first two pairs of lines (in-
spiration and breathhold), VA represents different
effective axial positions in the alveolar region
(Fig. 1B), while for the last pair (expiration), VA

represents different times during the exhalation.
For model 1 (thin lines), the effective alveolar
axial concentration gradient or slope, Salv,1, is zero
at tinsp and tinsp+ tbh. During exhalation there is a
decay in concentration that reflects uptake by the
pulmonary blood and creates a slope, Sexh,1, equal
to DL/V: E. For model 2 (thick lines) there is a
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Fig. 2. The natural logarithm of the effective normalized
alveolar concentration, as predicted by models 1 and 2 is
presented as a function of the natural logarithm of VA. Three
pairs of lines are plotted, one for each model’s output at three
different points of the single breath maneuver (i.e. at the end
of inspiration tinsp, at the end of breath holding tinsp+ tbh, and
during exhalation t\ tinsp+ tbh). The thin lines represent
model 1, while the bold or dark lines represent model 2. For
the first two pairs of lines (inspiration and breathhold repre-
sented by dashed lines), VA represents different position in the
alveolar region, while for the last pair (expiration represented
by solid lines), VA represents different time during the exhala-
tion. The generated slope during exhalation according to
model 2 (Sexh,2) is steeper than the corresponding slope of
model 1 (Sexh,1) by Salv,2 (the effective alveolar concentration
gradient prior to exhalation).

between. To generate a model which behaves
somewhere in between these two extremes one can
combine Eqs. 5a,b and 13 using two restrictions
or assumptions: (1) the effective alveolar concen-
tration gradient should lie between the minimum
value of model 1 and the maximum value of
model 2; and (2) C.( A(tB tinsp+ tbh) should be in
agreement with both models (Tsoukias,
1999). The result is the following equation
(model 3), which introduces a free parameter k
(Fig. 3):

lnC. E(t+VDS/V: E)=DL
� 1

V: E
+

k
V: I

�
ln

VA(t)
VAo

−
DL

VAo

tbh+ln
�kDL+V: I

DL+V: I
c
�

(14)

For k=0, Eq. (14) reduces to model 1 (5a,b),
while for k=1, Eq. (14) reduces to model 2 (Eq.
(13)). For 0BkB1, the slope of the effective
alveolar concentration profile, Salv,3, generated
during inspiration is equal to kDL/V: Iand lies be-
tween the minimum slope of Model 1 (Salv,1=0)
and the maximum slope of Model 2 (Salv,2=DL/
V: I).

k represents an index of the rate of decrease in
CE due to the sequential filling of the lung. The
term (1/V: E+k/V: I) represents the change in the
effective residence time of each gas bolus in the
alveolar region (tres) per unit change in volume.
Thus, k could be independently estimated if the
relationship between tres and VA during exhala-
tion is known. Regardless of the value of k,
C.( A(tinsp,k) will remain the same (equal to
C. A(tinsp)), while the decay in alveolar concentra-
tion during exhalation (i.e., Sexh,3) and the average
value of the exhaled concentration may change.
Theoretically, −1BkB1, where negative values
of k represent a lung which fills ‘first in, first out’.
For example, if a lung filled in a completely ‘first
in–first out’ fashion and V: I=V: E, then all gas boli
would have the exact same residence time in the
alveolar region, and thus the same concentration
on exhalation. In other words, the exhaled con-
centration would be constant in time. This is
precisely the case for k= −1, which causes the
first term in the left hand side of Eq. (14) to be
zero.

slope, Salv,2, in the effective alveolar concentration
profile at tinsp and tinsp+ tbh due to uptake during
inspiration equal to DL/V: I. This additional effec-
tive gradient creates a steeper exhalation slope,
Sexh,2, equivalent to the sum Sexh,1+Salv,2 (or

Sexh,2=DL
� 1

V: E
+

1
V: I

�
).

2.1.4. Model 3 (combination of model 1 and
model 2)

The actual lungs do not behave as a perfectly
mixed compartment, nor as a series of completely
sequentially filling independent compartments.
Models 1 and 2 represent extreme cases; thus, the
actual behavior of the lungs lies somewhere in
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2.2. Case II: DL= f(VA)

Eq. (14) was derived assuming that DL is con-
stant. The same approach can be used when DL is
a simple function of VA. We present two different
functions for DL(VA). The first is a simple linear
dependence of DL on VA (i.e. DL(VA)=a+
bVA). The second has a physical and anatomical
basis, and is derived from a simple model for the
membrane diffusing capacity (Appendix B) that
suggests a dependence of the form DL(VA)=a

VAb. These two functional forms for DL(VA) can
be inserted into the governing equations described
previously and be solved to derive a solution for
the exhaled concentration for model 3:

DL(VA)=a+bVA:

ln C. E
�

t+
VDS

V: E

�
=a

� 1
V: E

+
k
V: I

�
ln

VA(t)
VAo

+b
� 1

V: E
+

k
V: I

�
(VA(t)−VAo)−

a+bVAo

VAo

tbh

+lnÃ
Ã

Ã

Á

Ä

VAo

VAo−VRV

& VAO

VRV

exp[b/V: I(VA(t)−VAo)] [VA(t)/VAo]a/V: I dVA& VAo

0

exp[kb/V: I(VA(t)−VAo)] [VA(t)/VAo]ka/V: I dVA

(15)

DL(VA)=a VAb

ln C. E
�

t+
VDS

V: E

�
=

a
b
� 1

V: E
+

k
V: I

�
[VA(t)b−VAo

b ]−aVAo
b-1tbh

+lnÃ
Ã

Ã

Á

Ä

VAo

VAo−VRV

& VAO

VRV

exp[a/bV: I(VAb−VAo
b)]dVA& VAO

0

exp[ka/(bV: I)(VAb−VAo
b)]dVA

Ã
Ã

Ã

Â

Å

(16)

Â
Ã
Ã
Ã
Å

Fig. 3. Graphical representation of models 1–3 with constant DL. The natural logarithm of the normalized exhaled concentration,
as predicted by models 1, 2 and 3 is presented as a function of the natural logarithm of the normalized alveolar volume. See text
for definitions of the slopes of the effective alveolar concentration gradient.
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Table 1
Parameter values for single breath simulation

Parameter UnitsValue

Single breath
mlVRV 1150
ml5150VAO

V: i 2000 ml/sec
ml/sec350V: e
ml/sec (ml/min/mmHg)DL 380 (30)
%vol0.3CI

tbh 0.5 sec

Inert gas
0.3CI,CH4 %vol
(225.28+0.003CE,CH4 %vol
VA)×10−3

constant exhalation phase and will be referred to
as DLCE (Newth et al., 1977; Stokes et al., 1981;
Graham et al., 1983). The second considers all
three-phases of the breathing maneuver and will
be referred to as DL3-Eq (Graham et al., 1980,
1981; Saumon et al., 1984). DLCE is estimated
from the slope of ln(C. E) versus ln(VA), which
according to Eq. 5, should be equal to the ratio
DL/V: E. Thus, DLCE is calculated from the follow-
ing expression:

DLCE=Sexh,1 � V: E (18)

DL3-Eq is estimated using Eqs. (5a,b) (i.e. com-
bination of the equations. for the three phases of
the single breath). DL3-Eq is the optimum value of
DL for which the model-predicted (Eqs. (5a,b))
CE best fits the experimental data. For our case,
the estimation of DL3-Eq was made using an opti-
mization algorithm to minimize the sum of
squares of error between predicted and model
generated (‘experimental’) exhaled profiles over
the entire exhaled interval from VAo to VRV.

3. Results

3.1. Effect of sequential filling

The simulations are performed using model 3 as
a hypothetical lung with a constant diffusing ca-
pacity DLCO=30 ml/min/mmHg (380 ml/sec).
Unless otherwise stated, a single breath is simu-
lated using the control parameters summarized in
Table 1, and includes inspiration from VRV to
VAo, breathhold, and expiration to VRV. The sin-
gle breath-prolonged breathhold was simulated at
two different breath hold times (tbh=5 and 10
sec), the effect of inspiratory flow rate was exam-
ined in the range from 350 to 3000 ml/sec, and
three different values of k were used (0, 0.5 and
1.0). Using these ‘experimental’ data from model
3, one can then estimate DL of our hypothetical
lung using the standard Jones–Meade method
(DLJM), utilizing exhaled gas samples collected at
different points throughout the exhalation, the
3-Eq. analysis (DL3-Eq), or the constant exhalation
analysis (DLCE).

The estimation of the integrals in Eqs. (15) and
(16) can be done numerically, or using infinite
series sum formulas.

2.3. Calculating DL

2.3.1. Single breath – prolonged breathhold
The Jones–Meade method (Jones and Meade,

1961) is the standard method used clinically to
determine DLCO in a prolonged breathhold ma-
neuver. DL determined using the Jones–Meade
method, DLJM, is calculated using the following
equation:

DLJM=
VAo

t−0.3tinsp

ln
CE(t+VDS/V: E)

CAo(VA(t))
(17)

Jones and Meade (1961) suggested the collec-
tion of a small exhaled sample (�85 ml) for the
measurement of VAo, CAo and CE, while others
have used larger samples (500 ml, Graham et al.,
1980). In every case the time interval is estimated
until the midpoint of the collection of the sample.
For our simulation the size of the collected ex-
haled sample did not affect the results (examined
sizes 1–500 ml) and thus a minimum exhaled
sample was used.

2.3.2. Single breath – constant exhalation
DL can be estimated using two analysis tech-

niques following a prolonged constant exhalation
maneuver. The first utilizes only data from the
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Fig. 4. DLCO measurement with the Jones–Meade method. DLJM estimation as a function of the alveolar volume (% of vital
capacity) at the time of collection of the exhaled sample. Two different breath hold times and three different inspired flow rates are
examined. The effect of a possible effective alveolar concentration gradient due to sequential filling is examined through three
different values of k (0, 0.5, and 1). Experimental data were generated using Eq. (14) and a constant DLCO of 30 ml/min/mmHg.

Fig. 4 plots DLJM as a function of the VA at the
time of collection of the exhaled gas (presented as
a percent of the vital capacity). The data pre-
sented here are derived using a point (minimal
size) collection sample. Three different inspiratory
flow rates are shown (V: I=1000, 2000 and 3000
ml/sec). For k=0 (well-mixed alveolar region or
model 1), the Jones–Meade method can accu-
rately estimate DLCO, when the exhaled gas sam-
ple is collected immediately following the dead
space wash-out (i.e. in the early part of the exha-
lation). Using a sample collected later in the exha-
lation will result in an overestimation of DLCO.
This overestimation will be less pronounced if the
breathhold time or the inspiratory flow rate is
increased. For k=0.5 or 1 (i.e. part of the decay
in the exhaled concentration is generated from the
sequential filling of the lung), the Jones–Meade
method again overestimates DLCO when samples
are collected later in the exhalation. In contrast
with before, however, collection of the exhaled
sample immediately following the dead space
wash-out will underestimate DLCO. As is the case
for k=0, the estimation of DLCO with the Jones–

Meade method is improved by increasing the
breathhold time or the inspiratory flow rate.

Fig. 5 plots DLCE as a function of V: I. When
there is no significant contribution on the decay of
the exhaled concentration from the sequential

Fig. 5. DLCO measurement with the continuous exhalation
technique. DLCE estimation of DLCO as a function of the
inspiratory flow rate. The effect of a possible effective alveolar
concentration gradient due to sequential filling is examined
through three different values of k (0, 0.5, and 1). A constant
value for DLCO of 30 ml/min/mmHg was used.
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Fig. 6. DLCO measurement with the 3-Eq. approach. DL3-Eq

estimation of DLCO as a function of the inspiratory flow rate.
The effect of a possible effective alveolar concentration gradi-
ent due to sequential filling is examined through three different
values of k (0, 0.5, and 1). Experimental data were generated
using Eq. (14) and a constant DLCO of 30 ml/min/mmHg.

and 20 ml/sec/L, respectively, and for a and b to
be 500 ml/sec/L-b and 0.8, respectively, which
provide the following functional dependence of
DL on VA: DLCO(VA)=17.37+1.58 VA (ml/min/
mmHg), and DLNO(VA)=39.5VA0.8 (ml/min/
mmHg) with VA in liters. We used Eqs. (15) and
(16) as our hypothetical lung for CO and NO
respectively, and the relationships above for DLCO

and DLNO, to generate ‘experimental’ data using
the same range of values for k, tbh, and V: I as
before for the case of a constant DL. We then
analyzed this data to determine DLCO and DLNO

using Jones–Meade method, the 3-Eq. method, or
the constant exhalation technique.

Fig. 7 plots the estimated DLCO and DLNO

using the Jones–Meade method as a function of
VA at the end of inspiration. Simulations were
performed using different inspired volumes and a
prolonged breathhold time of 10 sec. Since most
of the gas exchange occurs during breathholding,
DLJM should approximate the value of DL at VAO

(i.e. DLJM:DL(VAO)). Thus, one can utilize dif-
ferent inspired volumes to investigate the depen-
dence of DL on VA. For the calculations an
exhaled sample collected at 100% of V.C. (i.e.
immediately following the dead space washout) is
used.

In Fig. 7A,B simulations are performed for
k=0 and three different values of V: I (500, 1000
and 2000 ml/sec). In Fig. 7C,D, V: I is set to the
control value (2000 ml/sec) while we investigate
the effect of different k (0, 0.5, 1). In the absence
of a significant effective alveolar concentration
gradient from the sequential filling (k=0), DLJM

can sufficiently approximate the actual DL at
different lung volumes, for both gases, provided
that sufficient inspiratory flows have been utilized
(i.e. V: I\2000 ml/sec). Thus, the Jones–Meade
method can provide a satisfactory description of
the dependence of DL on VA. As V: I decreases, the
method progressively underestimates DL. This un-
derestimation is much more significant for NO
than for CO. In addition, when k\0 the Jones–
Meade method significantly underestimates DL

for both gases even at high V: I (2000 ml/sec). Since
the absolute error is more significant at high
volumes the method in this case will underesti-
mate the dependence of DLCO and DLNO on VA.

filling of the lung (k=0), there is, again, no
difference between DLCE and DLCO. On the other
hand, if the lung behaves as a completely (k=
1.0), or partially (k=0.5) sequentially filled com-
partments, then DLCE o6erestimates the actual
DLCO and this phenomenon is exaggerated at low
inspiratory flows. Inspection of Eqs. 5a,b and 14
indicates that this overestimation is proportional
to the value of k and the ratioV: E/V: I (i.e. DLCE=
DL(1+kV: E/V: I).

Fig. 6 presents DL3-Eq as a function of V: I. For
k=0, Eqs. 5a,b and 14 become equivalent and
there is no difference between DL3-Eq and the
hypothetical lung. For k\0, DL3-Eq underesti-
mates DLCO and, as before, the error becomes
more significant at slow inspiratory flow rate
maneuvers.

3.2. DL as function of VA

The small dependence of DLCO on VA can be
approximated as linear (DLCO=a+bVA), while
the dependence of DLNO can be described by an
exponential function (DLNO=aVAb) (Appendix
B). Eqs. (15) and (16) can then be used to simu-
late the hypothetical lung for CO and NO, respec-
tively, to determine the impact of a variable DL.
Preliminary data from normal subjects indicate
approximate values for a and b to be 220 ml/sec
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Fig. 8A,B plots the estimated DLCO and DLNO

using the single breath-constant exhalation ma-
neuver with either the 3-Eq. approach (DL3-Eq) or
the continuous exhalation technique (DLCE) as a
function of VA. Both methods provide a constant
value for DL independent of VA (i.e. horizontal
lines) even though DL in the ‘experimental’ lung is
changing with VA (thick solid line). For k=0,
both methods provide an estimation of DL, which
is significantly smaller than the estimation ac-
quired with the Jones–Meade method for the
same inspired volume (DLJM:DL(VAO)). DLCE is
less than the mean value of DL over the examined
range of VA (VRV−VAO) while DL3-Eq is higher.
In agreement with the case of constant DL, DLCE

is a positive function of k while DL3-Eq is a
negative function of k for both gases.

Fig. 9 plots the exhaled NO concentration CE

as a function of VA. The thick solid line repre-
sents the ‘experimental’ lung as predicted by Eq.
(16) with DLNO(VA)=39.5 VA0.8. No additional
effective alveolar concentration gradient from the
sequential filling of the lung (i.e. k=0) is as-
sumed. As described above, the continuous exha-
lation technique and the 3-Eq. approach provide
a constant value for DLNO (i.e. DLCE=89, DL3-

Eq=127 ml/min/mmHg). Simulations using these
constant values for DLNO (Eq. (14)) result in
exhalation profiles (dotted lines) which differ sig-
nificantly from the ‘experimental’ data. DLCE pre-

Fig. 7. Jones–Meade method for the measurement of volume dependent DLNO and DLCO. Predictions, using the Jones–Meade
method as a function of the alveolar volume at the end of inspiration. ‘Experimental’ data were generated using Eq. (15) or Eq. (16)
and the relationships: DLNO=39.5VA0.8 and DLCO=17.37+1.58VA. Simulations performed using different inspiratory flow rates
and different values for k. (A) DLJM for NO at three different inspiratory flow rates. (B) DLJM for CO at three different inspiratory
flows. (C) DLJM for NO at three different values of k. (D) DLJM for CO at three different values of k. Solid lines represent the
‘actual’ dependence of DLNO and DLCO on VA.
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Fig. 8. DLCE and DL3-Eq estimations of volume dependent
DLNO and DLCO. Estimation of DLNO (A) and DLCO (B),
using the continuous exhalation technique or the three equa-
tions approach, as a function of the alveolar volume. ‘Experi-
mental’ data were generated using Eq. (15) or Eq. (16) and the
relationships: DLNO=39.5VA0.8 and DLCO=17.37+1.58VA.
Simulations performed using two different values for k (k=0,
0.5). The ‘actual’ dependence of DLNO and DLCO on VA is
also plotted.

of the diffusing capacity have assumed a well-
mixed alveolar compartment. However, there is
strong experimental and theoretical evidence that
this represents a rough approximation, and that
the lung inflates and deflates, at least in part, in a
sequential fashion (Dollfuss et al., 1967; Cotton et
al., 1979; Fukuchi et al., 1980; Engel and Paiva,
1981; Meyer et al., 1983). Researchers have at-
tempted to account for the incomplete mixing in
the alveolar compartment by correcting the decay
in the exhaled gas concentration with the simulta-
neous decay of an inert gas such as methane or
helium (Newth et al., 1977). The mechanism that
accounts for a heterogeneous distribution of inert
gas alveolar concentrations is primarily parallel
inhomogeneities in the convective–diffusive inter-
actions during filling and emptying of the lung
(Paiva and Engel, 1981). However, a consequence
of parallel inhomogeneities is sequential filling
and emptying of the lungs; thus, one can antici-
pate a discrepancy in the residence times of gas
boli in the alveolar region of lungs. Hence, re-
gions of the lungs that fill first will have a lower
concentration (relative to those which fill last) of a
gas such as CO or NO which are not inert, but
are diffusing into the pulmonary circulation.
Thus, CO and NO would have a steeper effective
alveolar concentration gradient than an inert gas
such as CH4.

Fig. 9. DLCE and DL3-Eq prediction of the exhalation profile.
Prediction of the exhaled NO concentration using Eq. 5a,b
and the DLCE or DL3-Eq estimations for DLNO. ‘Actual’ data
(solid line) derived using Eq. (16) and the relationship:
DLNO=39.5VA0.8. Simulations performed using the control
parameter values (Table 1) and for k=0.

dicts exhaled concentrations much higher than
‘experimental’. DL3-EQ predicts an exhalation
profile that fits the ‘experimental’ data in the early
part of exhalation, but fails to predict the rate of
decay in the latter part. Similar behavior, but to a
lesser extent, can be observed for CO (data not
shown).

4. Discussion

4.1. Effect of sequential filling

Previously developed models for the estimation
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Jones and Meade (1961) suggested that their
method could provide an accurate estimation of
the diffusing capacity if the exhaled gas sample is
collected early in the exhalation (immediately fol-
lowing the dead space wash-out). Graham et al.
(1980), using simulations for different flow and
breathhold conditions, showed how the Jones–
Meade method could overestimate DL if
the exhaled gas was not collected early in the
exhalation phase. Our data (Fig. 4) suggests an
alternative explanation. If there is a contribution
to the CO effective gradient from the sequential
filling of the lung (k\0), then the Jones–
Meade method o6erestimates the true DL

when the exhaled gas is sampled late in the
exhalation phase, but underestimates DL if the
sample is taken immediately after deadspace
wash-out. Importantly, the average experi-
mental value for k is 0.51 in normal subjects
(Tsoukias et al., 2000) suggesting a significant
component of sequential filling. As a result,
even if exhaled samples are collected immediately
after the dead space of the lungs is emptied, one
would anticipate a weak reproducibility and accu-
racy for the method unless high enough inspira-
tory flows and sufficient breathhold times are
utilized to counteract the effect of sequential
filling.

The overestimation of DL is generated from the
fact that the Jones–Meade method does not de-
scribe the non-exponential decay during exhala-
tion. The concentration decays faster during
exhalation than during breathholding; thus, an
artificially low exhaled concentration is observed
resulting in an overestimation of DL. The error
can be significantly reduced if the sample is col-
lected immediately after the dead space of the
lungs is exhaled which causes the decay in the
concentration during expiration to be minimal in
comparison with the decay during breathhold.
However, if there is an effective gradient in the
alveolar concentration due to sequential filling,
the early sample of exhaled air is not representa-
tive of the average alveolar concentration. This
early portion of the exhaled gas has resided in the
lungs for less time and thus has an artificially high
concentration of gas resulting in an underestima-
tion of DL.

A continuous single exhalation technique pro-
vides an estimation of DL independently of the
inspiratory and breathhold phases of the single
breath maneuver by utilizing only the rate of
change of gas concentration during exhalation.
This method offers several advantages over other
techniques for the measurement of DL. The
method does not require knowledge of breathhold
or inspiration time, inspiratory flow, residual vol-
ume, or initial alveolar concentration, and,
thus, eliminates error associated with the estima-
tion of these parameters. Previous investigators
have presented modifications of this method in-
cluding the use of the breathhold equation to
describe the exchange over small intervals during
exhalation (Newth et al., 1977; Stokes et al.,
1981), or the point sample and the discrete
sample variations (Graham et al., 1983). Our ap-
proach to estimate the ratio of DLCO/V: E from the
slope of ln C. E versus ln VA should be in agree-
ment with the above analyses provided that V: E

and DLCO remain constant throughout the exhala-
tion.

The decay in the exhaled gas concentration is
generated primarily from the continuous gas up-
take during exhalation according to Eq. (4). How-
ever, part of this decay is a result from the
effective concentration gradient in the alveolar
region due to incomplete mixing. In order to
accurately estimate DL we need to distinguish the
part of the decay that is attributed to diffusion
into the pulmonary blood during inspiration from
the part that is generated purely by gas mixing
mechanisms. Newth et al. (1977) suggested using
the decay of the inert gas (CH4 or He) to correct
for gas mixing inhomogeneities (Eq. (2b)), based
on the assumption that gases with similar gas
phase diffusivities should exhibit similar effective
alveolar concentration gradients. Based on the
analysis above, it is possible for a gas that is
absorbed by the pulmonary blood to exhibit a
much steeper effective alveolar concentration gra-
dient due to the sequential filling of the lung and
subsequent heterogeneity in alveolar residence
times. Then as presented in Fig. 5 (for k\0), the
method overestimates the actual DL. Comparison
of Eqs. 5a,b and 14 reveals that the overestima-
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tion increases with the ratio V: E/V: I. Thus, to
improve the accuracy of the method the minimum
allowable ratio of expiratory to inspiratory flow
rates should be used.

The 3-Eq. method presented here differs slightly
from that introduced by Graham et al. (1980) in
the way the value of DL is determined. They used
an iterative scheme and comparison of the mea-
sured average exhaled concentration with that
predicted from the simulation (Graham et al.,
1980). Integration of Eqs. 5a,b and 14 suggests
that the average exhaled concentration, over a
specified interval, will be different for k\0. Thus,
the method will fail to predict the accurate DL if
there is a significant contribution to the effective
alveolar concentration gradient from the sequen-
tial filling of the lung. For consistency with the
method used for the non-constant DL we used a
least square method to fit the profile predicted
from the simulation with the ‘experimental’ data,
rather than comparing the average concentra-
tions. Our results however should be in agreement
with the method of Graham et al. (1980). Fig. 6
reveals a slight underestimation of DLCO with the
3-Eq. method when sequential filling has an im-
pact on the decay of exhaled CO. Although the
method behaves better than those previously de-
scribed, the underestimation could become signifi-
cant at small V: I.

4.2. DL as a function of VA

An increase in DLCO with VA has been sug-
gested from the early works of Ogilvie et al.
(1957) and Miller and Johnson (1966), and more
recently by Rose et al. (1979) and Borland and
Higenbottam (1989). The researchers used DLJM

to estimate DLCO. There is at least one case in the
literature that exhibits the opposite behavior (i.e.
a slight decrease of DLCO with VA) while other
reports suggest that DLCO remains essentially con-
stant at different lung volumes (Newth et al.,
1977; Graham et al., 1980). Despite the contro-
versy regarding DLCO, DLNO is a strong function
of VA.

Appendix B, coupled with preliminary experi-
mental data, suggests that DLCO and DLNO can be
approximated by the functions 17.37+1.58 VA

and 39.5 VA0.8, respectively, which indicates a 17
and 38% decrease, respectively, when VA is re-
duced from 7 to 3.9 L. Thus, our results are in
close agreement with Borland and Higenbottam
(1989) who reported a 34% decrease in DLNO, in
comparison with only 8% decrease in DLCO, when
VA is reduced from 7 to 3.9 L. This dependence
may be attributed to: (1) an artifact arising from
a possible inhomogeneous DL of the lung coupled
with sequential emptying. For example, the basal
compartment contributes more to flow early in
the exhalation while the apical latter. Thus if the
apical region had a lower DL than the basal
region then the ‘observed’ DL should progres-
sively decrease during exhalation; (2) an actual
increase in the ability of the lung to absorb the
gas at higher lung volumes due to either an in-
crease in the available surface area for diffusion,
or due to a decrease in the thickness of the barrier
between the gas and the blood (Staub, 1969;
Weibel et al., 1973; Davidson and Fitzgerald,
1974). Current models do not consider a variable
DL with VA.

The Jones–Meade method (although developed
with the assumption of constant DL) can provide
a description of the dependence of DL on VA

when multiple single breath maneuvers with dif-
ferent inspired volumes are utilized. Fig. 7A,B
suggest an underestimation of DL(VAo) at low V: I

and at high VAo. If DL is a positive function of
VA then the effective DL during inspiration
should be less than during breathhold where VA

has the maximum value. As a result DLJM will
decrease when the exchange of gas during inspira-
tion becomes significant relative to that during
breathhold. This occurs when either the inspired
volume is increased or V: I is decreased (in either
case we have an increase in tinsp). The phe-
nomenon is more profound for NO where the
change of DL with VA is more significant.

DLJM will also underestimate DL(VAo) when
k\0. This observation is supported by analysis
of experimental data in the companion
manuscript (Tsoukias et al., 2000). Thus, the
Jones–Meade method appears to have two disad-
vantages in providing a description for DL(VA):
(1) multiple single breaths are needed to estimate
DL at various volumes; and (2) the method will,
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in general, underestimate DL and its dependence
on VA. Model 3 provides an alternative to the
Jones–Meade method without the above prob-
lems, and should be utilized especially for gases
such as NO where DL is a strong function of VA.

The prolonged exhalation methods (i.e. contin-
uous exhalation and 3-Eq. method) provide a
constant value as an estimation of DL(VA). DLCE

and DL3-Eq represent weighted averages of the DL

over the part of the exhalation used for the analy-
sis (i.e. in our case VRV−VAO). In the absence of
an effective alveolar concentration gradient from
sequential filling (k=0), DL3-Eq is higher than
DLCE (Fig. 8). Although the two methods assume
the same model to describe the exchange of gas
(Eqs. 5a,b) the optimum value for DL is defined
differently in the two approaches. When DL is
volume dependent, Eqs. 5a,b cannot accurately
describe the exchange, resulting in the discrepancy
between the two values. DL3-Eq will have a value
such as to minimize the error between the ‘experi-
mental’ data and that predicted using Eqs. 5a,b.
In doing so, the value for DL will be relatively
high to account for the higher values of DL

during breathhold or the early part of exhalation.
The predicted exhaled profile will best approxi-
mate the exhaled profile in the early part (Fig. 9),
but will fail to provide an accurate description in
the latter part (significant relative error). DLCE

will have a value that describes the average rate of
decay (defined from the slope of ln C. E versus ln
VA) during the examined part of exhalation. This
value underestimates the DL during breathhold
resulting in a significant overestimation of the
exhaled concentration (Fig. 9). As k increases,
same as for the case of constant DL, DLCE will
increase while DL3-Eq will decrease (Fig. 8).

4.3. Model limitation

In the formulation of the model we assumed a
uniform distribution of the diffusing capacity in
the lung (DL/VA=constant). It has been estab-
lished, however, that the basal region of the lung
exhibits a higher DLCO/VA ratio (due to higher
perfusion) compared to the apical region. In addi-
tion, the basal region of the lungs contributes
more to the flow early in exhalation. Thus, part of

the observed increase of DL with VA may be
attributed to the non-uniformity of DL coupled
with sequential emptying. Our new method does
not provide a means of distinguishing the part of
the dependence of DL on VA generated from the
non-uniformity of tissue properties from that of
physical changes in the tissue such as stretching of
the alveolar wall. This phenomenon may be more
important in diseased lungs where the heterogene-
ity of DL may be exaggerated. This phenomenon
should not impact significantly DLNO due to the
very rapid reaction of NO with hemoglobin.

In addition the estimated value of k may be
affected by the non-uniformity of DL. If a hetero-
geneous DL were a critical feature for the estima-
tion of k, one would expect to see differences in
the estimated k using CO versus NO (DLCO will
have higher heterogeneity); however, our compan-
ion manuscript (Tsoukias et al., 2000) predicts no
statistical difference between k estimated with ei-
ther gas. Thus, although our new method does
not consider a heterogeneous DL, we do not
believe this significantly affects the estimation of
k. Nevertheless, for significantly inhomogeneous
lungs, an independent estimation for k could be
made utilizing inert gases and determining the
residence time distribution of gas boli.

5. Conclusions

There is experimental evidence that the alveolar
region is not well mixed, and is, in part, filled
sequentially. Importantly, prevalent lung diseases
such as COPD may exaggerate sequential filling.
The sequential filling of the lung may increase the
effective alveolar concentration gradient for solu-
ble or diffusing gases like NO and CO in compari-
son with the effective gradient of an inert or
insoluble gas such as CH4 or He. Current meth-
ods ignore a possible effective alveolar concentra-
tion gradient due to the sequential filling of the
lung. As a result, significant error may be intro-
duced in the estimation of DLCO and DLNO espe-
cially at low inspiratory flow rates. In addition,
previously developed models and methods for the
measurement of DL have assumed a constant
value independent of VA. Such an assumption
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Fig. 10. Normalized alveolar concentration as a function of
alveolar volume as predicted by models 1 and 2. Dashed lines
represent two extreme cases for the initial condition of model
2.

Appendix A. Initial condition for model 2

In a uniform alveolar model the uptake of gas,
and thus the average alveolar concentration dur-
ing inspiration or breathhold, is independent from
the distribution of the gas in the region (Tsoukias,
1999). Thus, the average alveolar concentration in
models 1 and 2 should be the same. Fig. 10 plots
the normalized alveolar concentration as a func-
tion of the alveolar volume (axial position) as
predicted by models 1 and 2. In addition, the
dashed lines represent the two extreme cases for
the initial condition of model 2 (Cb,N(0)=CI and
Cb,N(0)=CAo). For model 1, C. A is uniform
throughout the alveolar region (complete mixing).
In model 2, we seek a value for Cb,N(0) which
provides a solution for C. A that avoids the unreal-
istic discontinuities which are present in the limit-
ing cases (dashed lines), but still maintains the
same average alveolar concentration as model 1,
and the same effective gradient in the alveolar
concentration as the two limiting cases. Under
these constraints, and the relationships from Eqs.
2a,b and 10, the following relationships should
hold:

ln(C. b,N(tinsp))=ln
Cb,N(tinsp)
CAo(VAN)

=
DL

V: I
ln

VAN

VAo

+ln
Cb,N(0)

CAo(VAN)
(A1)

C.( A(tinsp)

=

& VAo

0

(Cb,N(tinsp)
CAo(VAN))

dV& VAo

0

dV

=
VAo/tinsp

DLV: I

�
1−

�VRv
VAo

�DL+V: I

V: I �
(A2)

where Cb,N(0) is the initial concentration, and
CAo(VAN) is the alveolar concentration if there
was complete mixing between the inspired and
residual volume. Inserting Eq. (A1) into Eq. (A2)
and integrating yields:

Cb,N(0)
CAo(VAN)

=
1− (VRV/VAo)(DL+V: I)/V: I

1−VRV/VAo

=c (A3)

may be an acceptable approximation for CO, but
is not valid for NO. With the exception of the
Jones–Meade method, current methods cannot
describe this dependence of DL on VA. However,
the Jones–Meade method needs multiple single
breaths for the estimation of DL at different VA’s,
and will tend to underestimate DL and its depen-
dence on VA. The model introduced in this
manuscript accounts for a variable effective alve-
olar concentration gradient due to the sequential
filling of the lung, and for a DL that changes with
VA. Thus, the model represents a potentially more
robust method to determine DL. The companion
manuscript (Tsoukias et al., 2000) investigates the
suitability of the model to estimate DL, its depen-
dence on VA, and the degree of sequential filling
in the lung through the parameter k from experi-
mental data in normal human subjects.
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Appendix B. A simple model for the membrane
diffusing capacity

The membrane diffusing capacity can be de-
scribed by the following equation:

DM=
D l S

dm

(B1)

where D is the diffusion coefficient in the tissue
layer, l is the partition coefficient, S is the surface
area available for diffusion, and dm is the effective
thickness between the gas and the blood. We
assume that the alveolar region consist of NA

(�300×106) identical alveoli. Morphometric
studies have described alveoli of different shapes
including truncated spherical ones ranging from
1/4 of a sphere to 5/6 of a sphere. Our model
alveolus is assumed to be a truncated sphere (Fig.
11). The following equations then hold for the
volume Va and surface area Sa of an alveolus:

Va=
4
3
pR3�1

2
+

h
2R

�
=

4
3
pR3g (B2)

Sa=4pR2�1
2
+

h
2R

�
=4pR2g (B3)

Where g represents the part of a sphere that
describes the shape of the model alveolus (1/4B
gB5/6). Combining Eqs. (B2) and (B3) yields the
total alveolar surface area SA:

SA=NASa= (36pgNA)1/3VA2/3 (B4)

dm (�0.5 mm) is much smaller than R (�100
mm). Thus, the total tissue volume surrounding
the alveoli can be approximated as:

Vt=NAdmSa (B5)

In order for the tissue volume to remain constant,
dm should be inversely proportional to Sa.

Combining Eqs. (B1), (B4) and (B5) and assum-
ing that the alveolar surface area available for
diffusion S is equal to SA one gets:

DM=
Dl(36pgNA)2/3

Vt

VA4/3=aVA4/3 (B6)

Weibel et al. (1973) suggested that during
breathing the thickness of the barrier dm remain
unchanged, and only the surface area change by
folding and unfolding. In contrast, other investi-
gators (Staub, 1969; Davidson and Fitzgerald,
1974) suggested that the surface area available for
diffusion remain unchanged (surface area around
the capillaries is independent of lung volume) and
changes in DL can be attributed to changes in dm.
Thus, this simplified alveolar model suggests an
exponential dependence of DM on VA (DM=
aVAb). We anticipate the exponent b to be some-
where between 2/3 and 4/3 depending on whether
or not both the surface area and the thickness of
the barrier between blood and gas change with
VA. Since NO reacts much faster with hemoglobin
than CO, DLNO should be independent of the
capillary blood volume or the specific blood trans-
fer conductance u, and should be in close agree-
ment with the membrane diffusing capacity
(Guenard et al., 1987; Borland and Higenbottam,
1989). For CO the transfer from the blood to the
gas is both diffusion and reaction limited and thus
such an assumption is not valid. However, since
the dependence is small, a simple linear relation-
ship can be a satisfactory approximation for
DLCO.
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