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Abstract

The diffusing capacity of the lung, DL, is a critical physiological parameter, yet the currently accepted clinical
model (Jones–Meade) assumes a well-mixed alveolar region, and a constant DL independent of alveolar volume, VA,
despite experimental evidence to the contrary. We have formulated a new mathematical model [Tsoukias, N.M,
Wilson, A.F., George, S.C., 2000. Respir. Physiol 120, 231–249] that considers variable alveolar mixing through a
single parameter, k (0BkB1), and a DL that is a positive function of VA (DL=a+bVA or DL=aVAb). The goal
of this study is to determine the suitability of this model to determine the unknown parameters a, b, a, b, and k from
experimental data in normal subjects. The model predicts that the normal lung fills, in part, sequentially (k=0.519
0.35). The following average values in all seven subjects were obtained: DLNO=48·VA2/3 ml/min/mmHg and
DLCO=20+0.7·VA ml/min/mmHg (STPD) where VA is expressed in L (STPD). We conclude that the mathematical
model is suitable for identifying the unknown parameters and thus can be used to characterize the degree of alveolar
mixing (or sequential filling) as well as the volume dependence of DL. © 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Mathematical modeling has been used exten-
sively in the past to characterize and understand
physiological systems including the estimation of
key physiological parameters. The diffusing ca-
pacity of the lung, DL, is such a parameter with

* Corresponding author. Tel.: +1-949-8243941; fax: +1-
949-8242541.

E-mail address: scgeorge@uci.edu (S.C. George)

0034-5687/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PII: S 0034 -5687 (00 )00104 -3



N.M. Tsoukias et al. / Respiration Physiology 120 (2000) 251–271252

significant clinical importance. Since the beginning
of the century there have been numerous modeling
attempts aimed at developing a simple and robust
method for the accurate determination of this
parameter (Krogh, 1915; Ogilvie et al., 1957; Jones
and Meade, 1961; Newth et al., 1977; Cotton et al.,
1979; Graham et al., 1980).

A new mathematical model was developed previ-
ously in the companion manuscript (Tsoukias et al.,
2000) to determine DL for both CO and NO from
a single breath constant exhalation maneuver. The
model accounts for a variable alveolar axial con-
centration gradient due to sequential filling through
the introduction of a new parameter k. In addition,
the model equations were solved for a volume
dependent DL. A simple linear function was as-
sumed adequate to describe the dependence of
DLCO on VA, while a simple model for the mem-
brane diffusing capacity suggested an exponential
dependence of DLNO on VA.

The goal of this manuscript is two-fold: (1)
determine the suitability of the model to identify
unknown parameters; and (2) compare the perfor-
mance of the model to experimental data collected
from normal human subjects. The suitability of the
model to identify unknown parameters includes an
analysis of sensitivity, identifiability, and uncer-
tainty. Sensitivity analysis includes an investigation
to determine whether the model output (i.e. exhaled
concentration) is sensitive enough to the unknown
parameters that need to be identified (i.e. DL). In
addition, the estimated parameters can also be
considered an output; thus, one may determine
their sensitivity to other experimentally measured
input parameters. In this way one attains a descrip-
tion for the error in the identifying parameters that
is induced by the error in the measured inputs.
Identifiability analysis determines whether or not
(or under what conditions) each of the unknown
parameters can be determined uniquely or iden-
tified. Uncertainty analysis utilizes the above re-
sults to predict a confidence region for the
estimated parameters.

Following the model analysis, we performed a
series of experimental single breath maneuvers in
normal subjects. The mathematical model was then
used to determine DLNO and DLCO as a function
of VA, as well as the degree of mixing and/or

sequential filling in the lungs. Importantly, experi-
mental data were also analyzed using the currently
accepted Jones–Meade method (Jones and Meade,
1961) in an effort to understand the limitations and
sources of error of this technique, and to highlight
the advantages of our new model for accurately
assessing DL.

2. Methods

2.1. Model

The model equations have been developed in
detail in the companion manuscript and are pre-
sented here in a slightly different manner that will
prove useful in understanding our model analysis.
We will consider only the cases of variable DL

and the effect of sequential filling. Thus, two
distinct cases exist, and the corresponding solu-
tions (Tsoukias et al., 2000) are as follows:

CASE I: DL=a+bVA (linear dependence, ap-
plicable to CO)
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where CE(t+VDS/V: E) is the exhaled concentra-
tion of gas and is equal to the concentration of
the gas exiting the alveolar region at time t since
the beginning of exhalation, CAo is the initial or
pre-expiratory alveolar concentration, c1 and c2

are functions defined in the companion
manuscript (Tsoukias et al., 2000), k represents an
unknown parameter that varies between 0 (com-
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plete alveolar mixing) and 1 (complete sequential
filling), V: I and V: E are the inspiratory and expira-
tory flow rates, tbh is the time of breathholding, and
VRV and VAo are the pre-inspiratory and pre-ex-
piratory alveolar volumes. In addition, the follow-
ing relationships hold:

CAo(t)=CI

CE,CH4(VA)
CI,CH4

=CI

aE,CH4+bE,CH4VA(t)
CI,CH4

(3)

VRV=VAo−
& VAo

0

CE,CH4(VA)dVA
,

CI,CH4 (4)

where CI is the inspired concentration of the
examined gas (CO or NO), CI,CH4 and
CE,CH4(VA(t)) are the inspired and exhaled concen-
tration of the inert gas (CH4), respectively. The
decay of CE,CH4 during exhalation is approximated
as linear (CE,CH4=aE,CH4VA+bE,CH4). Thus, the
model provides an expression for CE of the form:

CE(t)= f(t, X0 , Y0 ) (5)

where X0 = [VAo V: I tbh V: E CI CI,CH4 aE,CH4

bE,CH4] represents the vector of known (experimen-
tally measured) parameters, and Y0 = [a b kCO] for
CO, or Y0 = [a b kNO] for NO represents the vector
of the unknown parameters to be identified. kCO

and kNO represent the estimate for k using CO and
NO as the test gas, respectively.

2.2. Nonlinear least squares

Identification of unknown parameters is accom-
plished by minimization of the sum of squares of
the absolute error (SSEa) between the model predic-
tions and the experimental data:

SSEa(X0 , Y0 )=%
i

( f(ti, X0 , Y0 )−CE(ti)*)2 (6)

where CE(t)* is the data against which the model
is being compared. Minimization of the sum of
squares of the relati6e error (SSEr) is also used:

SSEr(X0 , Y0 )=%
i

�f(ti, X0 , Y0 )−CE(ti)*
CE(ti)*

�2

(7)

Thus, the identification of the parameters reduces
to the solution of one of the following uncon-

strained minimization problems:

minY0 {SSEj(X0 , Y0 )}, j=a, r (8)

The output of this minimization process is the
vector of optimal parameters, Y0 f.

In this study, we utilized a quasi-Newton opti-
mization algorithm with line search (Kahaner et al.,
1988) to determine the unknown vector Y0 f. The
model equations (Eqs. (1) and (2)) are used to
generate ‘experimental’ data (i.e. CE(t)*). In this
manner, research conclusions are independent of
the specific features of a real experiment such as the
intrinsic noise of the analytical instruments, the
volumes and diffusing capacities of examined sub-
jects, and the sampling rate of the data collection.
However, the conclusions related to sensitivity and
identifiability are still applicable to experimental
data as we are investigating the intrinsic behavior
of the model. Thus, the behavior of the model is
examined over a wide range of potential experimen-
tal conditions and not just at the conditions of the
specific experimental study. Simulations are per-
formed for a total number of 100 data points
(l=100 where l is the number of data points) from
VAo to VRV with a sampling rate inversely propor-
tional to V: E.

2.3. Sensiti6ity analysis

We first define the sensitivity of the model output
as the gradient vector (1xn, where n is the number
of unknown parameters) of the partial derivatives
of the model output (i.e. f(t, X0 , Y0 )) with respect to
the unknown parameters, estimated at the nominal
parameter values X0 o, Y0 o. Because the unknown
parameters have different absolute values, an ap-
propriate description for the magnitude of the
sensitivity is acquired by normalizing Y0 by the
nominal value of the unknown parameter. In this
fashion we can define the semi-relative sensitivity,
S. f, Y0 (t, X0 o, Y0 o) (Frank, 1978), as:

S. f,Y0 (t, X0 o, Y0 o)=
�(f(t, X0 , Y0 )

(Yj

Yoj

n
X0 o, Y0 o

j=1,…n

(9)

Each element of the matrix represents the absolute
change of the model’s output per fractional (or
relative) change of the corresponding parame-
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ter. Thus, sensitivities with respect to different
parameters can be compared. The unknown
parameters must significantly effect the model
output in order to be identified. Thus, the change
in the model’s output for an acceptable perturba-
tion in any of the parameters (i.e. parameter
induced error (Frank, 1978)) must be significant.
A necessary criterion for the sensitivity analysis is
that this parameter induced error must be larger
than the intrinsic error of the analytical instru-
ment used to measure CE(t)*.

The behavior of the model needs to be exam-
ined at different nominal points X0 o, Y0 o (i.e. points
in the (n+m)-dimensional space) in order to de-
termine experimental conditions that are particu-
larly desirable (high S. f, Y0 ) or undesirable (low
S. f, Y0 ). Thus, a root mean square semi-relative
sensitivity function is defined to represent a sensi-
tivity index over the entire examined portion of
the exhalation:

S.( f, Y0 (X0 o, Y0 o)=
D%

t

(S. f, Y0 (t, X0 o, Y0 o)) 2

l

(10)

where the summation term includes l time points
in the examined exhalation interval. Maximizing
this index provides the optimal experimental con-
ditions for the estimation of a single parameter
(Yi) when the output (CE) has an additive, zero
mean, constant variance, and independent normal
error, and the independent variables (X0 ) are er-
rorless (Beck and Arnold, 1977). In the analysis
above we have assumed errorless measured input
parameters (X0 ). However, significant error may
be associated with the measurement of any of
these parameters. The analysis of potential error
in X0 exceeds the scope of this study and has been
previously presented (Tsoukias, 1999).

2.4. Identifiability analysis

There are different problems that might occur
during the process of identifying unknown
parameters, such as the existence of local minima
in SSE, or multiple global minima. Depending on
the initial estimation of the unknown parameters,
the algorithm might converge to a local minimum,
resulting in an error. This problem can be over-

come by utilizing a better initial estimate. The
presence of multiple global minima renders a
unique Y0 f unidentifiable. This constitutes a more
serious threat for the suitability of the model, and
is the focus of our analysis.

We can utilize the sensitivity-based local-iden-
tifiability method (Beck and Arnold, 1977). This
method states simply that two parameters are
locally unidentifiable (cannot be distinguished
from each other) if their sensitivities (i.e. S. f, Y0 ) are
linearly dependent (analysis not shown here, see
(Tsoukias, 1999)). This method is useful for iden-
tifying whether or not two parameters can be
distinguished from one another locally. However,
it does not address the issue of global
unidentifiability.

Our approach is to construct three-dimensional
images of SSE with respect to any two of the
unknown parameters, while minimizing for the
third. These three-dimensional maps of SSE re-
veal the uniqueness of a potential global mini-
mum in the examined range of parameter values.
In addition, the contours of SSE define confidence
regions for the identifying parameters and can be
used to provide a description for the uncertainty
of the estimated parameters (see uncertainty anal-
ysis below).

2.5. Uncertainty analysis

The F-statistic test as described by Beck and
Arnold can be used to attain confidence contours
for the estimated parameters (Beck and Arnold,
1977). Assuming additive, zero mean, and normal
distributed measurement errors, and errorless
measured inputs, the following relationship
applies:

F1−a(n, l−n)=
SSE(Y0 )−SSE(Y0 f)

SSE(Y0 f)
(l−n)

n
(11)

Thus, all combinations of the estimated parameter
values that produce SSE within a range around
the minimum value, based on the confidence level
(1–a), are potential optimal points. Thus, the
three-dimensional maps of SSE can be translated
to confidence regions for the estimated parame-
ters. The range of potential optimal values for the
parameters, and thus the uncertainty of the esti-
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mation, will depend on the magnitude of the
sensitivity and on the local identifiability of the
parameters in relationship with the accuracy of
the least square fitting (SSE(Y0 f)).

2.6. Estimating the deri6ati6es

The partial derivatives in S. f, Y0 cannot be esti-
mated analytically due to the complex form of
Eqs. (1) and (2); thus, numerical techniques are
employed. The partial derivatives were estimated
using automatic differentiation techniques. These
techniques are based on the application of the
chain rule, over the composition of elementary
operations, used for the computation of a func-
tion. We used the ADIFOR 2.0 system for auto-
matic differentiation of FORTRAN code (Bischof
et al., 1994). The system performs a symbolic
source transformation of the FORTRAN code
(i.e. rewrites the original code) inserting state-
ments for the computation of first order deriva-
tives according to the automatic differentiation
techniques. In the end, the generated code pro-
vides the original output plus a user-specified
Jacobian matrix of partial derivatives. ADIFOR-

generated code outperforms finite difference ap-
proximation both in accuracy and computational
time.

2.7. Subjects

Single breath maneuvers were performed in
seven normal men (28.493.8 (SD) yr; 160930
(SD) pounds) with no history of smoking or lung
diseases. The protocol was approved by the Insti-
tutional Review Board at the University of Cali-
fornia, Irvine. Subjects were categorized as
normal on the basis of standard spirometry that
included forced vital capacity, forced expiratory
volume in 1 sec, and forced expiratory flow be-
tween 25 and 75% of the exhaled volume.

2.8. Experimental setup

The general principles of the experimental setup
are presented schematically in Fig. 1. The mouth-
piece (Sensormedics, Yorba Linda, CA) between
the subject’s mouth and sampling port comprises
the expiratory dead space VDS,exp (100 ml), while
the space between the sampling port and the test
gas compromise the inspiratory dead space
VDS,insp (150 ml), and includes a flow meter and a
three-way valve. The valve was controlled elec-
tronically allowing the subjects to tidal breath
room air through port 1, make a single inspiration
of the test gas through port 2, and then exhale
through port 3. A Starling resistor was placed on
port 3 to facilitate a constant slow expiratory flow
independent of the expiratory effort of the
subject.

2.9. Airstream analysis

NO concentration was measured using a chemi-
luminescence NO analyzer (NOA280, Sievers In-
struments, Boulder, CO). The instrument provides
highly accurate (repeatability91 ppb) gas phase
measurements with a very small detection
threshold (B5 ppb–500 ppm) and a fast response
time (0–90% 200 ms). A needle valve restricts
flow and maintains an operating reaction cell
pressure of 7.5 mmHg and a sampling rate 250
ml/min. Calibration of the instrument was per-

Fig. 1. Schematic of experimental set-up. The mouthpiece
between the subject’s mouth and sampling port comprises the
expiratory dead space VDS,exp (100 ml), while the space be-
tween the sampling port and the test gas compromise the
inspiratory dead space VDS,insp (150 ml), and includes a flow
meter and a three-way valve. The valve is controlled electroni-
cally allowing the subjects to tidal breath room air through
port 1, make a single inspiration of the test gas through port
2, and then exhale through port 3. A starling resistor was
placed on port 3 to facilitate a constant slow expiratory flow
independent of the expiratory effort of the subject.



N.M. Tsoukias et al. / Respiration Physiology 120 (2000) 251–271256

formed on a daily basis using a certified NO
gas mixture (45 ppm in N2) (Scott Medical Prod-
ucts, Plumsteadville, PA) and a purified filter
(Sievers, Boulder, CO) for the zero point calibra-
tion.

The measurement of CO, CH4, flow rate and
the operation of the valves were performed by
Sensormedics 2200 pulmonary function equip-
ment (Sensormedics, Anaheim, CA). The equip-
ment utilizes a fast-response multi-gas infrared
analyzer and a mass flow sensor. Calibration of
the infrared analyzer, and the flow meter, was
done on a daily basis using our test gas (see
below) and a three-liter syringe.

2.10. Gas mixtures

Two different mixtures were used as the in-
spired test gas; one with and one without NO.
The NO-free mixture contained 0.3% CO, 0.3%
CH4, 0.3% C2H2, and 21% O2 in N2 (Puritan
Bennet, Overland Park, KS). The second test gas
was identical to the first with the exception of 50
ppm NO. This gas was generated by mixing equal
volumes in a mylar bag of a gas containing 6%
CO, 6% CH4, 6% C2H2 and 42% of O2 in N2

(Scott Medical Products, Plumsteadville, PA)
with a gas containing 100 ppm of NO in N2

(INOMAX, Ohmeda, CA). The gas was mixed
just prior to each single breath test to
avoid significant levels of NO2 from the oxidation
of NO (Borland and Higenbottam, 1989). The
NO-free gas was used as a control to de-
termine the potential effect of NO on the simulta-
neous determination of DLCO. The addition of
acetylene in the mixture was for the simultaneous
estimation of cardiac output and tissue volume
(data not shown here) (Martonen and Wilson,
1982).

2.11. Protocol

Subjects performed a series of single breath
maneuvers in a sitting position. A minimum time
of 4 min was allowed to elapse between the tests
to allow the inspired test gas to wash out from the
patient’s lungs. The subjects were allowed to tidal
breath room air through a mouthpiece, and then

instructed to exhale to residual volume before
performing the single breath maneuver (ATS,
1987). The subjects then performed a rapid inspi-
ration of the test gas followed by one of two
different single breath maneuvers: (1) a constant
exhalation maneuver whereby the subject exhales
until RV with a constant low flow rate after a
short period of breathholding (:0.5 sec); and (2)
a prolonged breathhold maneuver whereby the
subject exhales rapidly following a significant
breathhold (:6 sec). Our breathhold time was
somewhat shorter that the standard method (:
10 sec) in order to preserve a high end-exhaled
NO concentration (i.e. much larger than endoge-
nous levels) (Guenard et al., 1987; Borland and
Higenbottam, 1989). In general, a breathhold of
10 sec should not increase endogenous levels
above 50–100 ppb; thus, we are interested in
maintaining exhaled exogenous levels above 1
ppm (1000 ppb) to avoid contamination from
endogenous production. To investigate the
impact of lung volume on DL in the prolonged
breathhold maneuver, we had each subject
repeat the maneuver at two different inspired
volumes: (1) :50% of vital capacity (VC); or (2)
VC. To facilitate this maneuver, a pneumatic
valve was placed at port 2 and was closed manu-
ally when the desired inspired volume was
reached.

2.12. Data analysis

NO, CO, CH4 concentration (CNO, CCO, CCH4)
and volume (V) were continuously recorded
throughout the single breath and were stored in a
computer. CNO, CCO, CCH4 were synchronized
with V by aligning the start of inspiration in the
signals while correcting for the rise times of the
instruments, and taking into consideration the
transport delay through VDS,insp (Fig. 2). The
volume of the inspired gas was adjusted by sub-
tracting VDS,insp and the anatomic dead space,
VDS,A (assumed constant and equal to 150 ml)
(ATS, 1987). The alveolar volume during exhala-
tion (VA) was also adjusted by adding VDS,A and
VDS,exp.

The initial 750 ml of exhaled volume was dis-
carded, which was sufficient to wash-out VDS,A



N.M. Tsoukias et al. / Respiration Physiology 120 (2000) 251–271 257

Fig. 2. Representative experimental data for a constant exhalation maneuver. Concentrations of tracer gases and volume are shown
as a function of time for a typical constant exhalation maneuver. The solid circles on the volume curve represent the following in
sequential order: (1) end of inspiration; (2) end of breathhold (:0.5 sec); (3) end of deadspace washout and beginning of exhalation
data for data analysis; (4) end of exhalation data for analysis, or closing volume; and (5) end-exhalation. The shaded region
highlights the portion of the exhalation curves used in the data regression analysis.

and VDS,exp. The remainder of the prolonged con-
stant exhalation, up to closing volume, was used
for the analysis (shaded area in Fig. 2). The
residual volume, VRV, was estimated by the dilu-
tion of the inert gas (CH4). For this calculation,
we used the exhaled CH4 concentration just be-
fore the closing volume (CE,CH4(VCV)).

For the prolonged breathhold maneuver, the
standard Jones–Meade method was employed
(Jones and Meade, 1961; ATS, 1987). An exhaled
sample of 1 L immediately following the dis-
carded volume was used for the analysis. The
sample was not physically collected; however, the
rapid response analyzers enabled us to estimate
the concentration of CH4, CO, NO for the sample
by integrating the exhalation signals with respect
to volume.

2.13. Statistics

All comparisons between different parameters
are made using either a two-tailed paired or two-
tailed unpaired Student t-test with significance at
PB0.05.

3. Results

As mentioned earlier, for the model analysis,
the model equations (Eqs. (1) and (2)) are used to
generate ‘experimental’ data (i.e. CE(t)*). In this
manner, research conclusions for the suitability of
the model to identify the unknown parameters are
independent of the features of the specific experi-
ment. Values for the baseline or control nominal

Table 1
Nominal parameter values for X0 o and Y0 o

aE,CH4CI,CH4 (%)CI (NO, CO)V: E (ml/sec)tbh (sec)V: I (ml sec−1)VAo (L)Vector bE,CH4 (%/L)
(ppm, %) (%)

0.5 350X0 o 40, 0.35.15 0.3 0.225 0.0032000

kCO a (ml/sec L−b) ba (ml/sec) kNOb (ml/(sec L))
0.50.8500220 0.5Y0 o 20
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points X0 o, Y0 o used in the simulations are given in
Table 1.

3.1. Least squares minimization

The ability of the quasi Newton algorithm to
minimize the SSE was tested in several different
simulations. The model fitted the ‘experimental’
data satisfactorily (root mean square of residuals,

RMSR=
'SSEa

l
B10−4% CO or B1ppb NO),

and the identifying parameters agreed with the
nominal values (relative error B10−4). In addi-
tion, the partial derivatives computed using the
ADIFOR generated code were verified using a
finite difference scheme in selective cases.

3.2. Sensiti6ity analysis

Fig. 3A and B investigate the sensitivity for CO
and NO, at different nominal values (i.e. at differ-
ent points in the (n+m)-dimensional space).
From the infinite number of possible combina-
tions of nominal parameter values, we decided to
examine the effect of four parameters: VAo, V: I,
V: E, and tbh. These parameters have the greatest
potential for variation in an experimental proto-
col, while the remaining parameters are usually
kept constant. Thus, we seek to examine the
sensitivity of the model over different potential
experimental conditions to identify conditions of
maximum sensitivity. We performed simulations
for four different VAo (3.15, 4.15, 5.15, and 6.15
L), four different V: I (0.5, 1.0, 2.0, and 3.0 L/sec),
three different V: E (0.35, 0.7, and 1.05 L/sec) and
three different tbh (0.5, 3, and 7 sec). Thus,
S.( f, Y0 (X0 o, Y0 o) was estimated at a total or 144
(4×4×3×3) different points for CO and NO.
The sensitivity for the control nominal values is
shown for comparison (point c11 with darker
color). S.( f, a increases with VAo, while it decreases
when V: I or V: E is increased. S.( f, b also increases

with VAo, while S.( f, k is mostly affected by V: I in an
inverse fashion. For NO (Fig. 3B), S.( f, a increases
with both V: I and V: E. S.( f, b depends mostly on VAo

in a positive fashion and S.( f, k decreases with V: I.
In addition the sensitivity of the estimated

parameters with respect to the experimentally
measured ones (X0 ) was investigated, under differ-
ent experimental conditions (Tsoukias, 1999).
Parameters a and b are most sensitive to error in
VAo. Estimation of kCO is affected significantly by
the value of CI, CI,CH4 and aE,CH4. a and b are not
very sensitive to errors in the experimentally mea-
sured parameters. Estimation of kNO will be sensi-
tive to the values of CI, CI,CH4 and aE,CH4, and to
a lesser extent to the values of tbh and V: E

(Tsoukias, 1999).

3.3. Identifiability analysis

Fig. 4A presents the root mean squares of

residuals
�'SSEa

l
�

for CO using different combi-

nations of values for a and b and optimal kCO (i.e.
mink{ SSEa(a, b, kCO)}). Fig. 4B presents different
combinations of a and kCO for optimal b. The
graphs are repeated for NO in Fig. 5A and B. All
the simulations are performed using the control
nominal parameter values. The first observation is
the absence of multiple global minimum points, at
least in the range of parameter values examined.
Thus, a global unidentifiability problem does not
exist for either case. However, there exist multiple
combinations of a and b that produce essentially
the same very small SSEa, suggesting a depen-
dence (or local unidentifiability) between these
two parameters (more accurately ‘ill condition-
ing’). The combinations of a and b that effectively
‘minimize’ the SSE form a line of multiple ‘mini-
mum’ points that includes the point of the nomi-
nal parameter values (a=220 ml/sec, b=20
ml/sec/L) (true minimum or SSEa=0). Thus, for
an arbitrary value for a, relatively close to the

Fig. 3. The time-averaged (root mean square) semi-relative sensitivity function, S.( f,Y0 (X0 o, Y0 o), is shown for 144 different experimental
conditions (or 144 different values of X0 o ) for CO (A) and NO (B). Four different VAo (3.15, 4.15, 5.15, and 6.15 L), four different
V: I (0.5, 1.0, 2.0, and 3.0 L/sec), three different V: E (0.35, 0.7 and 1.05 L/sec) and three different tbh (0.5, 3, and 7 sec) were used in
the simulations. The sensitivity for the control nominal values is shown for comparison (11th point, shown with darker color and
larger circle).
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Fig. 3.
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Fig. 4. RMSR is shown for CO using different combinations of values for a and b, and then finding the optimal k (A), and then
different combinations of a and k following determination of optimal b (B). All the simulations were performed using the control
nominal parameter values. The gray scale bar represents values for RMSR and is shown for reference.

nominal value, there will be a small range of
values for b that produces a satisfactory fit to the
experimental data.

In Fig. 4B a similar line is formed; however, the
line is essentially horizontal and much shorter
(spanning a small range of k ’s) suggesting that for
any given a and optimal b the optimal kCO will
have essentially a single and identifiable value.
Thus, there is no dependence between kCO and a.
Furthermore, since for any optimal set of a and b
the value of kCO will be essentially constant, kCO

will be independent of b as well (thus, the corre-
sponding b–kCO diagram is not shown).

The same phenomenon appears in Fig. 5A and
B for NO. There is a dependence between a and b

resulting in multiple points (combinations of a

and b) along a single line, that accurately fits the
data (Fig. 5A). This slightly curvilinear relation-
ship includes the point of the nominal parameter
values (a=500 ml/sec/L−8, b=0.8) where SSEa

is exactly zero. In all of these points, the value of
kNO will remain essentially constant (Fig. 5B),
suggesting that kNO can be uniquely identified.

In Fig. 4A, the dependence of b on a is approx-
imately linear (i.e. b=s*a+p). The coefficients s
and p, estimated with linear regression, are -0.265
and 78.2, respectively. The slightly curvilinear de-
pendence of b on a in Fig. 5A is described
accurately via a logarithmic dependence (i.e. b=
q*ln(a)+r). The coefficients q and r are esti-
mated with regression as −0.669 and 4.46,
respectively. The procedure can be repeated for
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determining the optimal sets of parameters that
minimize the SSEr for both cases. This results in
slightly different curves (data not shown) that
intersect at a common point which is equal to the
point of the nominal control values for a and b,
or a and b (that is, the true minimum, or SEEa=
0 and SSEr=0). Thus, utilizing weighted least
squares methods (chi-squared value) might im-
prove the estimation of the optimal combination
of a and b, or a and b.

In Fig. 6 we plot the functional dependence of
DLCO (Fig. 6A) and DLNO (Fig. 6B) on VA. The
set of nominal values of a and b (or a and b) was
used (thick lines) as well as different optimal sets
of a and b (or a and b) (thin lines). The plots
reveal that for both CO and NO, the different

Fig. 6. Functional dependence of DLCO (A) and DLNO (B) on
VA. The set of nominal values of a, b (or a and b) are used
(thick lines) as well as different optimal sets of a and b (or a

and b) (thin lines). The largest deviations represent a 25%
variation in b or b from the nominal control value.

Fig. 5. RMSR is shown for NO using different combinations
of values for a and b, and then finding the optimal k (A), and
then different combinations of a and k following determina-
tion of optimal b (B). All the simulations were performed
using the control nominal parameter values. The gray scale
bar represents values for RMSR and is shown for reference.

optimal sets of a and b (or a and b) represent a
family of curves for the functional dependence of
DL on VA with a single point that is common to all
of the cur6es. This common or critical point (VA,cr,
DL,cr) can be predicted from the coefficients s and
p (or q and r) (proof not shown (Tsoukias, 1999)).
For the control nominal parameter values, DL,cr

=296 ml/sec for CO at VA,cr=3.78 L, and a
DL,cr=1650 ml/sec at VA,cr=4.45 L for NO.
Thus, although the dependence between a and b
(or a and b) does not allow one to characterize
the functional dependence between DL and VA

with zero uncertainty, one can uniquely identify
DL (DL,cr) at a specific VA (VA,cr) that lies in the
middle region of the examined alveolar volumes
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(VAo−VRV). The error in the estimate of DL

progressively increases as VA deviates from VA,cr

(Fig. 6).
The functional dependence of a on b (and to a

lesser extend of a on b) is slightly different when
SSEr is used in the minimization. When the rela-
ti6e error is used, the later part of the profile
(lower concentrations) is predicted better than the
early part when compared to using the absolute
error. As a result, the critical point appears later
(smaller VA,cr) generating a different dependence
between a and b, and a and b. The difference
between relative and absolute minimization is
more profound for NO where the concentration
decreases rapidly over a larger range of concentra-
tions than CO. In general, a weighted least
squares method (x2-minimization) that accounts
for variation in the measured output at each point
is optimal, but requires knowledge of the variance
of the measurement error (Chatterjee and Price,
1977). However, this detailed information de-
pends heavily on the specific experimental set-up
and analytical instrument and is not always
available.

Thus, the minimization algorithm provides:

{ a, b, kCO }={(DL,cr−b VA,cr), b, kCO}

where (bo−Db)BbB (bo+Db) (12)

{a, b, kNO}=
!� DL, cr

(VA, cr)b

�
, b, kNO

"
where (bo−Db)BbB (bo+Db) (13)

where the value b or b lies somewhere in a range
around the nominal or ‘true’ value bo or bo. The
confidence region for b (or b) will depend on the
accuracy of the least square fit (i.e. sum of squares
of error) and can be estimated utilizing the F-
statistic test as described in Eq. (11). Thus, a more
appropriate description for the estimated DL is:

DLCO=DL, cr+b(VA−VA, cr), b=bo9Db
(14)

DLNO=DL, cr
� VA

VA, cr

�b

, b=bo+Db (15)

Parameters a and a have been replaced by their
functional linear and logarithmic dependence on b
or b, respectively. Thus, DL(VA) is represented as

a function of three unknown parameters that need
to be identified (i.e. DL,cr, VA,cr, and b or b). DL,cr

and VA,cr can be accurately estimated for each
maneuver utilizing multiple minimizations (i.e.
find a series ‘optimal’ combinations of a and b, or
a and b). Only parameter b or b will then vary
(by Db or Db) around the true or nominal value
bo and bo.

The above relationships indicate that a very
accurate estimate for DL at a specific point (VA,cr)
can be obtained, but the uncertainty increases as
VA diverges from VA,cr. In order to reduce this
uncertainty, the best possible estimation for b (or
b) is sought. Thus, for the experimental data,
parameter b or b is estimated as an average of the
optimal points from multiple maneuvers utilizing
minimization of the absolute and relative error.

3.4. Experimental data

The above theoretical considerations were ap-
plied in the analysis of the data collected from the
human subjects. Although DL was measured in
ml/sec (ATPS) (CE is measured in ATPS) we
converted our result to the more standard units of
ml/min/mmHg (STPD). Fig. 7A presents the least
square fit of the experimental NO data of the
representative example in Fig. 2. The root mean
square of residuals (RMSR) between the experi-
mental data and our simulation was 60.5 ppb.
Employing multiple minimization for the sum of
squares of the absolute error (SSEa) (i.e. for dif-
ferent a ’s near the optimal value we identify the
optimal set of b and k) multiple combinations of
a and b are identified that can satisfactory fit the
experimental data (Fig. 7B). The same procedure
was repeated for CO to identify optimal parame-
ter combinations for a and b. Typical values for
RMSR in the CO simulations were 10−3% CO
(data not shown).

Figs. 8 and 9 plots the results for DLCO and
DLNO for all constant exhalation maneuvers and
for all seven subjects. The point of maximum
confidence for DL (VA,cr, DL,cr) is indicated with a
star (*), and represents an average value in all
maneuvers performed by the subject. At this aver-
age VA,cr the variation in DL between maneuvers
is minimal (B2%). Dotted lines represent the
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dependence of DLCO (DLNO) on VA in the presence
of NO, while solid lines in Figs. 8 and 9 are from
the control experiments. The thick line represents
the DL prediction for the average value of b or b

from all maneuvers performed by the subject. The
shaded area indicates the part of the exhaled
profile (VA) used in the regression analysis. A
limited number of maneuvers were discarded if
the exhaled volume for analysis was B1.5 L, or if
the values for b or b were greater or less than two
standard deviations from the mean. The Jones–
Meade estimations of DLCO and DLNO from the

prolonged breathhold maneuvers are also pre-
sented in Figs. 8 and 9 for comparison (solid
circles), and are plotted at VAo (i.e. the alveolar
volume during breathholding where most of the
gas exchange occurs). The majority of the mea-
surements made using the Jones–Meade tech-
nique are smaller than the estimate used with our
model, and this finding is statistically significant
(PB0.01).

Table 2 compares estimated DLCO in the pres-
ence and absence of NO in the test gas. Since
DLCO depends on VA (Eq. (14)), the comparison is

Fig. 7. Regression analysis of representative data for NO shown in Fig. 2 (A). The average difference between the experimental data
and our simulation was 60.5 ppb, and values for the remaining regression parameters are shown. Regression analysis using the
absolute error (SSEa) is shown for the experimental data in Fig. 6 beginning with different a ’s near the optimal value (a=42.6) and
determining the corresponding optimal b and k (B). Multiple combinations of a and b produce a similar average error (range
60.5–68.7 ppb). The solid line represents a logarithmic regression of the dependence between a and b. Note that the logarithmic
regression parameters are used to determine DL,cr and VA,cr.
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Fig. 8. The dependence between DLCO (ml/min/mmHg) and VA is shown for all seven subjects. The thin lines (dashed is in the
absence of NO, solid in the presence of NO) represent the model prediction using the values for a, b, and kCO from the regression
analysis for each maneuver. The thick line is the model prediction using the mean values for a, b, and kCO from the regression
analysis of all of the maneuvers. The shaded region represents the minimum alveolar volume for which the data was attained. The
star indicates DL,cr and VA,cr, and the solid circles are DLCO determined from a breathhold maneuver and determined from the
Jones–Meade method.

made at VA,cr. Since small variations of VA,cr

exists between maneuvers, DLCO was estimated at
the average value of VA,cr according to Eq. (14).
In the presence of NO, the average value of DLCO

in six of the seven subjects is slightly higher;
however, this difference is not statistically signifi-
cant (P\0.05).

Estimates for b and b for each subject are
summarized in Fig. 10A and B (i.e. average values
in all maneuvers performed by the subject (9

S.D.)). For six of the seven subjects, DLCO in-
creases with VA (Fig. 8 or Fig. 10A). The average
value (9S.D.) for b in all seven subjects is 0.69
(90.79), which is statistically different from zero
(PB0.05) indicating that DLCO is not constant.
The variation of b between maneuvers within the
same subject is small (Fig. 9 or Fig. 11B). This
provides highly reproducible estimates for DLNO,
especially within the examined part of VA (shaded
area of Fig. 9). The average value (9S.D.) of b



N.M. Tsoukias et al. / Respiration Physiology 120 (2000) 251–271 265

for all subjects is 0.65 (90.19), which corre-
sponds to the lower limit (i.e. 2/3) of the predicted
range for b according to a simple model for the
membrane diffusing capacity (Tsoukias et al.,
2000). In addition, the average b is statistically
less than one (i.e. dependence of DLNO on VA is
not linear) and statistically larger than zero (i.e.
DLNO is not constant). Based on the above values
and the average values for DLCO and DLNO at
VA,cr the following average relationships were es-

tablished: DLCO=20+0.7·VA and DLNO=48·VA
2/3

ml/min/mmHg (STPD) where VA is expressed in
L (STPD).

Fig. 11 presents estimated values for k, esti-
mated either from the exhaled CO data (kCO) or
the exhaled NO data (kNO). The average value
(9S.D.) for kCO in all seven subjects was 0.56
(90.30) and is slightly higher than kNO, 0.46
(90.40). However, this difference is not statisti-
cally different from zero (PB0.05). In addition,

Fig. 9. The dependence between DLNO (ml/min/mmHg) and VA is shown for all seven subjects. The thin dashed lines represent the
model prediction using the values for a, b, KNO from the regression analysis for each maneuver. The thick line is the model
prediction using the mean values for a, b, and KNO from the regression analysis of all of the maneuvers. The shaded region
represents the minimum alveolar volume for which the data was attained. The star indicates DL,cr and VA,cr, and the solid circles
are DLNO determined from a breathhold maneuver and determined from the Jones–Meade method.
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Table 2
DLCO in the presence or absence of NO

DLCO (ml/min/mmHg)VA,cr (L)Subject

NO present NO absent

25.11 22.65.03
2 4.11 24.8 25.4
3 4.00 21.9 21.5

19.33.61 17.44
5 24.24.34 23.3

25.73.92 25.16
24.0 23.47 4.08

23.6 (2.2)Average (S.D.) 22.7 (2.7)

quentially filled unmixed alveolar region, respec-
tively.

4. Discussion

4.1. Sensiti6ity analysis

In exploring the suitability of the model for
parameter identification we first examine the sen-
sitivity of the identifying parameters on the mod-
el’s output. A small sensitivity suggests that an
unacceptable large range of values for the respec-
tive parameter can satisfactorily represent the
data, posing a problem for the identification.
Thus, sensitivity analysis can provide a first de-
scription for the expected variation in the esti-
mated parameters, relative to the error in the

both kCO and kNO are statistically different from 0
and 1, the limits of a well-mixed and a se-

Fig. 10. Estimates for b (A) and b (B) from regression analysis for each subject are summarized. The bar represents the average
values in all maneuvers performed by the subject (9S.D.) with the number of maneuvers shown in parentheses. Two values of b
are highlighted (2/3 and 4/3) for reference, which represent theoretical limiting cases.
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Fig. 11. Estimates for k using the regression from CO (kCO)
and NO (kNO) for each subject are summarized. The bar
represents the average values in all maneuvers performed by
the subject (9S.D.). Note that a value of k=1 represents the
limit of a completely sequentially filled alveolar region, and
k=0 represents complete alveolar mixing.

the choice should not be performed based solely
on the above criteria.

S.( f, Y0 at the control nominal values (solid circle
in Fig. 3A and B) were approximately 0.5, 0.2 and
0.1×10−3% CO per % change in a, b or k,
respectively, and 75, 95 and 20 ppb per percent
change in a, b or k, respectively. The above values
can be interpreted as the root mean square error
induced in the model output from a 1% perturba-
tion of the unknown parameter. Thus, sensitivity
analysis suggests that a necessary condition for
the estimation of a, b and k (or a, b and k) to be
within 1% is the following: the standard error in
the measurement of CE should be at least three
orders of magnitude less than the inspired concen-
tration (i.e. instrument error of 0.1×10−3% CO
or 20 ppb NO).

4.2. Identifiability analysis

The two-dimensional images in Figs. 4 and 5
reveal a dependence between parameters a and b
(or a and b) and thus, a local unidentifiability
problem (ill-conditioning). The variation of the
predicted parameters will be directly related to the
accuracy of the experimental measurement and
the ability of the model to simulate the data. Fig.
4A and Fig. 5A provide an estimation of the
expected variation in a and b (or a and b) for a
given level of accuracy in the fitting of the data
(confidence region). Values for b in a range 95%
from the nominal value can predict the experi-
mental exhalation profile with a RMSR less than
0.1×10−3% CO. For RMSR less than 0.2×
10−3% CO, the range of uncertainty in b in-
creases to 20%. For NO, values for b in a range
910% from the nominal value can predict the
data with a RMSR less than 30 ppb. For an
RMSR less than 95 ppb the range increases to
25%.

Comparing the results above with those from
the sensitivity analysis, it is evident that the local
unidentifiability problem between a and b, and a

and b poses the more serious threat for suitability
of the model for parameter identification. At a
confidence region described by the contour with
RMSR of 0.2×10−3% CO or 95 ppb NO, the
uncertainty in the estimate for b or b increases

measurement in CE or the accuracy of the least
square fit. Thus, one can use S.( f, Y0 to predict the
required accuracy for the experimental measure-
ment of the model’s output needed to provide an
estimate for the identifying parameter within an
acceptable range.

Fig. 3A and B reveal that optimal sensitivity for
each unknown parameter is not accomplished un-
der the same conditions; however, several general
conclusions can be made. In the examined range
of experimental conditions, analysis of CO data is
improved at high VAo. If VAo is large, then one
should also employ low V: E and V: I. For NO, one
should employ high V: E. V: I should be kept high if
one is interested in estimating a or b, but low if
high accuracy on k is desirable. A small breath-
hold time (:0.5 sec) is most appropriate for both
gases. If estimation of all of the unknown
parameters is equally important then criteria for
optimal experimental conditions can be formed by
examining the covariance matrix of the estimator
vector Y0 (Badavas and Saridis, 1970; Beck and
Arnold, 1977). The above analysis suggests exper-
imental conditions that improve sensitivity. How-
ever, the unknown parameters might depend on
these conditions (i.e. V: I may affect the distribu-
tion of ventilation and thus k). Thus, caution is
advised in choosing experimental conditions, and
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from 1% to 20 and 25%, respectively. Eq. (11)
relates the confidence region to the minimum
SSE. When the SSE approaches zero the confi-
dence region is minimal and parameters can be
accurately estimated. At a confidence level of
95%, the confidence region includes all com-
binations of the unknown parameters that meet
the following criteria: RMSR(Y0 )B1.041*RMSR-
(Y0 f)(F1−0.05(3,97)=2.7).

In an effort to improve the ability of the model
to identify the parameters, we explored the nature
of the dependence between the parameters. The
functional dependence of a and b (or a and b) can
be best described by a linear (or logarithmic)
relationship. The different optimal combinations
of a and b (or a and b) describe different curves
for the dependence of DL with VA, which all
intersect at a single point (Fig. 6). Thus, although
the multiple ‘optimal’ combinations of parameters
does not allow one to uniquely determine DL(VA)
over the entire range of VA, one can achieve an
excellent prediction for DL at a single specific VA.
This critical point of minimum uncertainty for
DL, (denoted DL,cr(VA,cr)) will be independent of
the ‘optimal’ combination of a and b (or a and b),
and will be subject and maneuver specific. Such a
result is, perhaps, anticipated based on the fact
that the uncertainty in estimating DL should in-
crease as VA diverges either direction from the
range of VA used in the regression analysis. Thus,
a single VA, somewhere in the middle of the VA

used in the regression analysis, should result that
has the minimum uncertainty in DL.

Estimation of DLCO is unaffected by the pres-
ence or absence of NO. Although there is a small
increase on the average DLCO (Table 2) in the
presence of NO (perhaps due to pulmonary va-
sodilation and increase in pulmonary capillary
volume), this difference is not statistically signifi-
cant. This finding is consistent with the study of
(Borland and Higenbottam, 1989) who utilized
the Jones–Meade method to determine the simul-
taneous measurement of DLCO and DLNO.

Fig. 7A demonstrates that the model can pre-
dict the experimental data quite accurately. A
portion (:40%) of the root mean square error
(60.5 ppb for NO) can be attributed to the inher-
ent noise of the signal (i.e. smoothing the data

with a moving average reduces the average error
to a minimum of 37 ppb). The remaining error
can be attributed to the quality of the maneuver
performed by the subject (i.e. variation in the flow
rates), the accuracy of the experimental measure-
ments, and to other explicit model simplifications
such as a homogeneous DL. The prediction of the
data for CO is comparable to that of NO.

4.3. Diffusing capacity

Both DLNO and DLCO are best estimated within
the alveolar volumes examined. The reproducibil-
ity of the measurement at VA,cr for each subject
was, on the average, less than 2% for both CO
and NO. The average (mean9SD) value for b
was statistically greater than zero (0.6790.79 ml/
min/mmHg/L) suggesting a slightly positive de-
pendence on VA. This result is again in agreement
with (Borland and Higenbottam, 1989) who re-
ported an 8% decrease (38.5–35.5 ml/min/mmHg)
in DLCO when VA changes from 7 to 3.9 L. One
can then easily estimate a value for b of 0.97
ml/min/mmHg/L from their data, which although
larger than our estimate (0.67), is certainly
comparable.

The average (mean9SD) value of b was ap-
proximately 2/3 (0.6590.19) which represents the
lower range of expected values based on the sim-
plified model of the membrane diffusing capacity
for NO, DMNO (Tsoukias et al., 2000). In addi-
tion, the mean value for b is statistically smaller
than the upper limit of 4/3. A value of 2/3 is
expected if either (but not both) of the following
assumptions are valid: (1) the alveolar surface
area available for diffusion remains constant dur-
ing breathing, and only the membrane thickness
changes (Staub, 1969); or (2) the change of DL

during breathing is attributed to unfolding of
alveolar septa (increased alveolar surface area)
and not to changes of membrane thickness (Wei-
bel et al., 1973).

The inter- and intra-subject variation in the
estimated value of b is larger than the variation in
the estimate of b. This finding may be attributed
to the local unidentifiability problem of b and b,
with respect to the accuracy of the simulation of
the exhaled profile for CO. RMSR of the model
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prediction to the experimental data was approxi-
mately 10−3% CO while for NO was 60 ppb.
Based on these values and according to Eq. (11)
and Fig. 4 and Fig. 5, the expected variation on b
and b should be \25 and 15%, respectively. The
sensitivity analysis revealed that this variation
occurs mainly due to dependence between a and b
(or a and b) and can be reduced with more
accurate measurements of CE. In addition, estima-
tion of b is particularly sensitive on VAo; thus,
part of the increased variation of b may be at-
tributed to error in estimating VAo (Tsoukias,
1999).

4.4. Comparison with Jones–Meade

The Jones–Meade method underestimates both
DLCO and DLNO (1198% and 1295% less for
CO and NO, respectively). This finding is consis-
tent with the model prediction in the companion
manuscript (Tsoukias et al., 2000), and can be
attributed to the following reasons. First, the
Jones–Meade Method assumes a completely well-
mixed alveolar compartment (k=0), and thus
neglects an additional effective alveolar concen-
tration gradient due to sequential filling of the
lung during inspiration. The experimental data
suggest that the lung is filled, in part, sequentially
(mean k=0.51). Thus, the initial volume of gas
exhaled has a shorter residence time in the alve-
olar region, and thus a larger concentration of
test gas. A larger concentration of test gas causes
the Jones–Meade method to underestimate DL.
Second, the Jones–Meade method does not con-
sider DL as a positive function of VA. Thus,
during inspiration, DL of the lung is less than at
the breathholding volume (VAo), the volume asso-
ciated with the measurement technique, causing
the method to underestimate DL.

The estimation of DL using the new mathemati-
cal model is more reproducible than the Jones–
Meade Method, especially at alveolar volumes
near VA,cr. In addition, the new model and the
single exhalation technique can derive informa-
tion not only for DL at a single volume, but can
also determine the dependence of DL with VA

through the parameters b and b. Similar informa-
tion utilizing the Jones–Meade Method requires

multiple breathing maneuvers at different vol-
umes. Even then only a small range of VA can be
examined since sufficient inspired volume is neces-
sary for the test; thus, the dependence of DL on
small VA cannot be explored. This is of critical
importance for subjects or patients with reduced
lung volumes such as those with chronic obstruc-
tive pulmonary disease (COPD).

4.5. Sequential filling

Values for k using exhaled data from either gas
are in close agreement. The average k using both
gases is 0.51, and is statistically different from
both 0 and 1. This suggests that the alveolar
region cannot be considered well-mixed or se-
quentially filled, and is not a surprising result
(Dollfuss et al., 1967; Cotton et al., 1979). Impor-
tantly, a value for k that is different from zero has
a substantial impact on the estimation of DL

(Tsoukias et al., 2000). The intra-subject variation
in the estimate of k is significant, and is likely due
to error in the experimental measurement of
parameters such as inspired concentrations of the
marker gas (i.e. NO) and inert gas (i.e. CH4)
(Tsoukias, 1999). The single parameter k repre-
sents an analytical technique to determine the
degree of mixing or sequential filling during infla-
tion of the lung. Our data suggest a value of 0.51
in normal lungs, but this may vary considerably in
disease states such as COPD or bronchial asthma
in which the filling pattern of the lungs is altered.

4.6. Implications for endogenous NO

Part of the motivation for developing the new
mathematical model and its validation with exper-
imental data is the relatively recent interest in
understanding endogenous NO exchange. En-
dogenous NO is elevated in several inflammatory
lung diseases, such as bronchial asthma; hence,
there is interest in understanding the exhalation
profile and a possible correlation with lung dis-
ease (Kharitonov et al., 1997). Certainly diffusion
of endogenous NO into the pulmonary circulation
will impact the exhalation profile, and several
recent mathematical models have attempted to
describe these dynamics (Hyde et al., 1997;
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Tsoukias and George, 1998). These models have
assumed a constant DLNO for simplicity and for a
lack of adequate description of DLNO(VA). The
development and predictions of these models will
have to be reexamined using the new information
presented in this manuscript.

5. Conclusions

The experimental data combined with the use
of a new mathematical model in this manuscript
suggest that current methods for determining DL

need to be reexamined. By including the effects of
sequential filling during inflation and the volume
dependence of DL in our analysis, we conclude
that the current clinically accepted Jones–Meade
Method may significantly underestimate DL. In
addition, if the Jones-Method is used to determine
the volume dependence of DL using multiple
breathing maneuvers, the technique will underesti-
mate this dependence. This conclusion is based on
our experimental data that suggest the normal
lung inflates, in part, sequentially, and that DL for
both CO and NO is a positive function of VA.
The new model and technique are simple to use (a
single exhalation) and are not constrained by as
many experimental conditions as the Jones–
Meade Method such as a rapid inhalation and
exhalation relative to the breathhold time. The
robustness of the model needs further testing un-
der a larger range of experimental conditions, and
also must be applied to patients who suffer from
lung diseases that are commonly assessed by
changes in DL.
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